| 1 | /** |
|---|
| 2 | @file AABSPTree.h |
|---|
| 3 | |
|---|
| 4 | @maintainer Morgan McGuire, matrix@graphics3d.com |
|---|
| 5 | |
|---|
| 6 | @created 2004-01-11 |
|---|
| 7 | @edited 2007-02-16 |
|---|
| 8 | |
|---|
| 9 | Copyright 2000-2007, Morgan McGuire. |
|---|
| 10 | All rights reserved. |
|---|
| 11 | |
|---|
| 12 | */ |
|---|
| 13 | |
|---|
| 14 | #ifndef G3D_AABSPTREE_H |
|---|
| 15 | #define G3D_AABSPTREE_H |
|---|
| 16 | |
|---|
| 17 | #include "VMapTools.h" |
|---|
| 18 | |
|---|
| 19 | #include "G3D/platform.h" |
|---|
| 20 | #include "G3D/Array.h" |
|---|
| 21 | #include "G3D/Table.h" |
|---|
| 22 | #include "G3D/Vector3.h" |
|---|
| 23 | #include "G3D/AABox.h" |
|---|
| 24 | #include "G3D/Sphere.h" |
|---|
| 25 | #include "G3D/Box.h" |
|---|
| 26 | #include "G3D/Triangle.h" |
|---|
| 27 | #include "G3D/Ray.h" |
|---|
| 28 | #include "G3D/GCamera.h" |
|---|
| 29 | #if 0 |
|---|
| 30 | #include "G3D/BinaryInput.h" |
|---|
| 31 | #include "G3D/BinaryOutput.h" |
|---|
| 32 | #endif |
|---|
| 33 | #include "G3D/CollisionDetection.h" |
|---|
| 34 | #include "G3D/GCamera.h" |
|---|
| 35 | #include <algorithm> |
|---|
| 36 | |
|---|
| 37 | // If defined, in debug mode the tree is checked for consistency |
|---|
| 38 | // as a way of detecting corruption due to implementation bugs |
|---|
| 39 | // #define VERIFY_TREE |
|---|
| 40 | |
|---|
| 41 | inline void getBounds(const G3D::Vector3& v, G3D::AABox& out) { |
|---|
| 42 | out = G3D::AABox(v); |
|---|
| 43 | } |
|---|
| 44 | |
|---|
| 45 | |
|---|
| 46 | inline void getBounds(const G3D::AABox& a, G3D::AABox& out) { |
|---|
| 47 | out = a; |
|---|
| 48 | } |
|---|
| 49 | |
|---|
| 50 | inline void getBounds(const G3D::Sphere& s, G3D::AABox& out) { |
|---|
| 51 | s.getBounds(out); |
|---|
| 52 | } |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | inline void getBounds(const G3D::Box& b, G3D::AABox& out) { |
|---|
| 56 | b.getBounds(out); |
|---|
| 57 | } |
|---|
| 58 | |
|---|
| 59 | |
|---|
| 60 | inline void getBounds(const G3D::Triangle& t, G3D::AABox& out) { |
|---|
| 61 | t.getBounds(out); |
|---|
| 62 | } |
|---|
| 63 | |
|---|
| 64 | |
|---|
| 65 | |
|---|
| 66 | inline void getBounds(const G3D::Vector3* v, G3D::AABox& out) { |
|---|
| 67 | out = G3D::AABox(*v); |
|---|
| 68 | } |
|---|
| 69 | |
|---|
| 70 | |
|---|
| 71 | inline void getBounds(const G3D::AABox* a, G3D::AABox& out) { |
|---|
| 72 | getBounds(*a, out); |
|---|
| 73 | } |
|---|
| 74 | |
|---|
| 75 | inline void getBounds(const G3D::Sphere* s, G3D::AABox& out) { |
|---|
| 76 | s->getBounds(out); |
|---|
| 77 | } |
|---|
| 78 | |
|---|
| 79 | |
|---|
| 80 | inline void getBounds(const G3D::Box* b, G3D::AABox& out) { |
|---|
| 81 | b->getBounds(out); |
|---|
| 82 | } |
|---|
| 83 | |
|---|
| 84 | inline void getBounds(const G3D::Triangle* t, G3D::AABox& out) { |
|---|
| 85 | t->getBounds(out); |
|---|
| 86 | } |
|---|
| 87 | namespace G3D { |
|---|
| 88 | namespace _internal { |
|---|
| 89 | |
|---|
| 90 | /** |
|---|
| 91 | Wraps a pointer value so that it can be treated as the instance itself; |
|---|
| 92 | convenient for inserting pointers into a Table but using the |
|---|
| 93 | object equality instead of pointer equality. |
|---|
| 94 | */ |
|---|
| 95 | template<class Type> |
|---|
| 96 | class Indirector { |
|---|
| 97 | public: |
|---|
| 98 | Type* handle; |
|---|
| 99 | |
|---|
| 100 | inline Indirector(Type* h) : handle(h) {} |
|---|
| 101 | |
|---|
| 102 | inline Indirector() : handle(NULL) {} |
|---|
| 103 | |
|---|
| 104 | /** Returns true iff the values referenced by the handles are equivalent. */ |
|---|
| 105 | inline bool operator==(const Indirector& m) { |
|---|
| 106 | return *handle == *(m.handle); |
|---|
| 107 | } |
|---|
| 108 | |
|---|
| 109 | inline bool operator==(const Type& m) { |
|---|
| 110 | return *handle == m; |
|---|
| 111 | } |
|---|
| 112 | |
|---|
| 113 | inline size_t hashCode() const { |
|---|
| 114 | return handle->hashCode(); |
|---|
| 115 | } |
|---|
| 116 | }; |
|---|
| 117 | } // namespace internal |
|---|
| 118 | } // namespace G3D |
|---|
| 119 | |
|---|
| 120 | template <class Handle> |
|---|
| 121 | struct GHashCode<typename G3D::_internal::Indirector<Handle> > |
|---|
| 122 | { |
|---|
| 123 | size_t operator()(const G3D::_internal::Indirector<Handle>& key) const { return key.hashCode(); } |
|---|
| 124 | }; |
|---|
| 125 | |
|---|
| 126 | namespace G3D { |
|---|
| 127 | |
|---|
| 128 | /** |
|---|
| 129 | A set that supports spatial queries using an axis-aligned |
|---|
| 130 | BSP tree for speed. |
|---|
| 131 | |
|---|
| 132 | AABSPTree allows you to quickly find objects in 3D that lie within |
|---|
| 133 | a box or along a ray. For large sets of objects it is much faster |
|---|
| 134 | than testing each object for a collision. |
|---|
| 135 | |
|---|
| 136 | AABSPTree is as powerful as but more general than a Quad Tree, Oct |
|---|
| 137 | Tree, or KD Tree, but less general than an unconstrained BSP tree |
|---|
| 138 | (which is much slower to create). |
|---|
| 139 | |
|---|
| 140 | Internally, objects |
|---|
| 141 | are arranged into an axis-aligned BSP-tree according to their |
|---|
| 142 | axis-aligned bounds. This increases the cost of insertion to |
|---|
| 143 | O(log n) but allows fast overlap queries. |
|---|
| 144 | |
|---|
| 145 | <B>Template Parameters</B> |
|---|
| 146 | <DT>The template parameter <I>T</I> must be one for which |
|---|
| 147 | the following functions are all overloaded: |
|---|
| 148 | |
|---|
| 149 | <P><CODE>void ::getBounds(const T&, G3D::AABox&);</CODE> |
|---|
| 150 | <DT><CODE>bool ::operator==(const T&, const T&);</CODE> |
|---|
| 151 | <DT><CODE>unsigned int ::hashCode(const T&);</CODE> |
|---|
| 152 | <DT><CODE>T::T();</CODE> <I>(public constructor of no arguments)</I> |
|---|
| 153 | |
|---|
| 154 | G3D provides these for common classes like G3D::Vector3 and G3D::Sphere. |
|---|
| 155 | If you use a custom class, or a pointer to a custom class, you will need |
|---|
| 156 | to define those functions. |
|---|
| 157 | |
|---|
| 158 | <B>Moving %Set Members</B> |
|---|
| 159 | <DT>It is important that objects do not move without updating the |
|---|
| 160 | AABSPTree. If the axis-aligned bounds of an object are about |
|---|
| 161 | to change, AABSPTree::remove it before they change and |
|---|
| 162 | AABSPTree::insert it again afterward. For objects |
|---|
| 163 | where the hashCode and == operator are invariant with respect |
|---|
| 164 | to the 3D position, |
|---|
| 165 | you can use the AABSPTree::update method as a shortcut to |
|---|
| 166 | insert/remove an object in one step after it has moved. |
|---|
| 167 | |
|---|
| 168 | |
|---|
| 169 | Note: Do not mutate any value once it has been inserted into AABSPTree. Values |
|---|
| 170 | are copied interally. All AABSPTree iterators convert to pointers to constant |
|---|
| 171 | values to reinforce this. |
|---|
| 172 | |
|---|
| 173 | If you want to mutate the objects you intend to store in a AABSPTree |
|---|
| 174 | simply insert <I>pointers</I> to your objects instead of the objects |
|---|
| 175 | themselves, and ensure that the above operations are defined. (And |
|---|
| 176 | actually, because values are copied, if your values are large you may |
|---|
| 177 | want to insert pointers anyway, to save space and make the balance |
|---|
| 178 | operation faster.) |
|---|
| 179 | |
|---|
| 180 | <B>Dimensions</B> |
|---|
| 181 | Although designed as a 3D-data structure, you can use the AABSPTree |
|---|
| 182 | for data distributed along 2 or 1 axes by simply returning bounds |
|---|
| 183 | that are always zero along one or more dimensions. |
|---|
| 184 | |
|---|
| 185 | */ |
|---|
| 186 | namespace _AABSPTree { |
|---|
| 187 | |
|---|
| 188 | /** Wrapper for a value that includes a cache of its bounds. |
|---|
| 189 | Except for the test value used in a set-query operation, there |
|---|
| 190 | is only ever one instance of the handle associated with any |
|---|
| 191 | value and the memberTable and Nodes maintain pointers to that |
|---|
| 192 | heap-allocated value. |
|---|
| 193 | */ |
|---|
| 194 | template<class TValue> |
|---|
| 195 | class Handle { |
|---|
| 196 | public: |
|---|
| 197 | /** The bounds of each object are constrained to AABox::maxFinite */ |
|---|
| 198 | AABox bounds; |
|---|
| 199 | |
|---|
| 200 | /** Center of bounds. We cache this value to avoid recomputing it |
|---|
| 201 | during the median sort, and because MSVC 6 std::sort goes into |
|---|
| 202 | an infinite loop if we compute the midpoint on the fly (possibly |
|---|
| 203 | a floating point roundoff issue, where B<A and A<B both are true).*/ |
|---|
| 204 | Vector3 center; |
|---|
| 205 | |
|---|
| 206 | TValue value; |
|---|
| 207 | |
|---|
| 208 | Handle<TValue>() {} |
|---|
| 209 | |
|---|
| 210 | inline Handle<TValue>(const TValue& v) : value(v) { |
|---|
| 211 | getBounds(v, bounds); |
|---|
| 212 | bounds = bounds.intersect(AABox::maxFinite()); |
|---|
| 213 | center = bounds.center(); |
|---|
| 214 | } |
|---|
| 215 | |
|---|
| 216 | inline bool operator==(const Handle<TValue>& other) const { |
|---|
| 217 | return (*value).operator==(*other.value); |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | inline size_t hashCode() const { |
|---|
| 221 | return value->hashCode(); |
|---|
| 222 | } |
|---|
| 223 | }; |
|---|
| 224 | |
|---|
| 225 | template<> |
|---|
| 226 | class Handle<Triangle> { |
|---|
| 227 | public: |
|---|
| 228 | /** The bounds of each object are constrained to AABox::maxFinite */ |
|---|
| 229 | AABox bounds; |
|---|
| 230 | |
|---|
| 231 | /** Center of bounds. We cache this value to avoid recomputing it |
|---|
| 232 | during the median sort, and because MSVC 6 std::sort goes into |
|---|
| 233 | an infinite loop if we compute the midpoint on the fly (possibly |
|---|
| 234 | a floating point roundoff issue, where B<A and A<B both are true).*/ |
|---|
| 235 | Vector3 center; |
|---|
| 236 | |
|---|
| 237 | Triangle value; |
|---|
| 238 | |
|---|
| 239 | Handle<Triangle>() {} |
|---|
| 240 | |
|---|
| 241 | inline Handle<Triangle>(const Triangle& v) : value(v) { |
|---|
| 242 | getBounds(v, bounds); |
|---|
| 243 | bounds = bounds.intersect(AABox::maxFinite()); |
|---|
| 244 | center = bounds.center(); |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | inline bool operator==(const Handle<Triangle>& other) const { |
|---|
| 248 | return value.operator==(other.value); |
|---|
| 249 | } |
|---|
| 250 | |
|---|
| 251 | inline size_t hashCode() const { |
|---|
| 252 | return value.hashCode(); |
|---|
| 253 | } |
|---|
| 254 | }; |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | template<class T> class AABSPTree { |
|---|
| 258 | protected: |
|---|
| 259 | public: |
|---|
| 260 | |
|---|
| 261 | |
|---|
| 262 | /** Returns the bounds of the sub array. Used by makeNode. */ |
|---|
| 263 | static AABox computeBounds( |
|---|
| 264 | const Array<_AABSPTree::Handle<T>*>& point, |
|---|
| 265 | int beginIndex, |
|---|
| 266 | int endIndex) { |
|---|
| 267 | |
|---|
| 268 | Vector3 lo = Vector3::inf(); |
|---|
| 269 | Vector3 hi = -lo; |
|---|
| 270 | |
|---|
| 271 | for (int p = beginIndex; p <= endIndex; ++p) { |
|---|
| 272 | lo = lo.min(point[p]->bounds.low()); |
|---|
| 273 | hi = hi.max(point[p]->bounds.high()); |
|---|
| 274 | } |
|---|
| 275 | |
|---|
| 276 | return AABox(lo, hi); |
|---|
| 277 | } |
|---|
| 278 | |
|---|
| 279 | /** Compares centers */ |
|---|
| 280 | class CenterComparator { |
|---|
| 281 | public: |
|---|
| 282 | Vector3::Axis sortAxis; |
|---|
| 283 | |
|---|
| 284 | CenterComparator(Vector3::Axis a) : sortAxis(a) {} |
|---|
| 285 | |
|---|
| 286 | inline int operator()(_AABSPTree::Handle<T>* A, const _AABSPTree::Handle<T>* B) const { |
|---|
| 287 | float a = A->center[sortAxis]; |
|---|
| 288 | float b = B->center[sortAxis]; |
|---|
| 289 | |
|---|
| 290 | if (a < b) { |
|---|
| 291 | return 1; |
|---|
| 292 | } else if (a > b) { |
|---|
| 293 | return -1; |
|---|
| 294 | } else { |
|---|
| 295 | return 0; |
|---|
| 296 | } |
|---|
| 297 | } |
|---|
| 298 | }; |
|---|
| 299 | |
|---|
| 300 | |
|---|
| 301 | /** Compares bounds for strict >, <, or overlap*/ |
|---|
| 302 | class BoundsComparator { |
|---|
| 303 | public: |
|---|
| 304 | Vector3::Axis sortAxis; |
|---|
| 305 | |
|---|
| 306 | BoundsComparator(Vector3::Axis a) : sortAxis(a) {} |
|---|
| 307 | |
|---|
| 308 | inline int operator()(_AABSPTree::Handle<T>* A, const _AABSPTree::Handle<T>* B) const { |
|---|
| 309 | const AABox& a = A->bounds; |
|---|
| 310 | const AABox& b = B->bounds; |
|---|
| 311 | |
|---|
| 312 | if (a.high()[sortAxis] < b.low()[sortAxis]) { |
|---|
| 313 | return 1; |
|---|
| 314 | } else if (a.low()[sortAxis] > b.high()[sortAxis]) { |
|---|
| 315 | return -1; |
|---|
| 316 | } else { |
|---|
| 317 | return 0; |
|---|
| 318 | } |
|---|
| 319 | } |
|---|
| 320 | }; |
|---|
| 321 | |
|---|
| 322 | |
|---|
| 323 | /** Compares bounds to the sort location */ |
|---|
| 324 | class Comparator { |
|---|
| 325 | public: |
|---|
| 326 | Vector3::Axis sortAxis; |
|---|
| 327 | float sortLocation; |
|---|
| 328 | |
|---|
| 329 | Comparator(Vector3::Axis a, float l) : sortAxis(a), sortLocation(l) {} |
|---|
| 330 | |
|---|
| 331 | inline int operator()(_AABSPTree::Handle<T>* ignore, const _AABSPTree::Handle<T>* handle) const { |
|---|
| 332 | const AABox& box = handle->bounds; |
|---|
| 333 | debugAssert(ignore == NULL); |
|---|
| 334 | |
|---|
| 335 | if (box.high()[sortAxis] < sortLocation) { |
|---|
| 336 | // Box is strictly below the sort location |
|---|
| 337 | return -1; |
|---|
| 338 | } else if (box.low()[sortAxis] > sortLocation) { |
|---|
| 339 | // Box is strictly above the sort location |
|---|
| 340 | return 1; |
|---|
| 341 | } else { |
|---|
| 342 | // Box overlaps the sort location |
|---|
| 343 | return 0; |
|---|
| 344 | } |
|---|
| 345 | } |
|---|
| 346 | }; |
|---|
| 347 | |
|---|
| 348 | // Using System::malloc with this class provided no speed improvement. |
|---|
| 349 | class Node { |
|---|
| 350 | public: |
|---|
| 351 | |
|---|
| 352 | /** Spatial bounds on all values at this node and its children, based purely on |
|---|
| 353 | the parent's splitting planes. May be infinite. */ |
|---|
| 354 | AABox splitBounds; |
|---|
| 355 | |
|---|
| 356 | Vector3::Axis splitAxis; |
|---|
| 357 | |
|---|
| 358 | /** Location along the specified axis */ |
|---|
| 359 | float splitLocation; |
|---|
| 360 | |
|---|
| 361 | /** child[0] contains all values strictly |
|---|
| 362 | smaller than splitLocation along splitAxis. |
|---|
| 363 | |
|---|
| 364 | child[1] contains all values strictly |
|---|
| 365 | larger. |
|---|
| 366 | |
|---|
| 367 | Both may be NULL if there are not enough |
|---|
| 368 | values to bother recursing. |
|---|
| 369 | */ |
|---|
| 370 | Node* child[2]; |
|---|
| 371 | |
|---|
| 372 | /** Array of values at this node (i.e., values |
|---|
| 373 | straddling the split plane + all values if |
|---|
| 374 | this is a leaf node). |
|---|
| 375 | |
|---|
| 376 | This is an array of pointers because that minimizes |
|---|
| 377 | data movement during tree building, which accounts |
|---|
| 378 | for about 15% of the time cost of tree building. |
|---|
| 379 | */ |
|---|
| 380 | Array<_AABSPTree::Handle<T> * > valueArray; |
|---|
| 381 | |
|---|
| 382 | /** For each object in the value array, a copy of its bounds. |
|---|
| 383 | Packing these into an array at the node level |
|---|
| 384 | instead putting them in the valueArray improves |
|---|
| 385 | cache coherence, which is about a 3x performance |
|---|
| 386 | increase when performing intersection computations. |
|---|
| 387 | */ |
|---|
| 388 | Array<AABox> boundsArray; |
|---|
| 389 | |
|---|
| 390 | /** Creates node with NULL children */ |
|---|
| 391 | Node() { |
|---|
| 392 | splitAxis = Vector3::X_AXIS; |
|---|
| 393 | splitLocation = 0; |
|---|
| 394 | splitBounds = AABox(-Vector3::inf(), Vector3::inf()); |
|---|
| 395 | for (int i = 0; i < 2; ++i) { |
|---|
| 396 | child[i] = NULL; |
|---|
| 397 | } |
|---|
| 398 | } |
|---|
| 399 | |
|---|
| 400 | /** |
|---|
| 401 | Doesn't clone children. |
|---|
| 402 | */ |
|---|
| 403 | Node(const Node& other) : valueArray(other.valueArray), boundsArray(other.boundsArray) { |
|---|
| 404 | splitAxis = other.splitAxis; |
|---|
| 405 | splitLocation = other.splitLocation; |
|---|
| 406 | splitBounds = other.splitBounds; |
|---|
| 407 | for (int i = 0; i < 2; ++i) { |
|---|
| 408 | child[i] = NULL; |
|---|
| 409 | } |
|---|
| 410 | } |
|---|
| 411 | |
|---|
| 412 | /** Copies the specified subarray of pt into point, NULLs the children. |
|---|
| 413 | Assumes a second pass will set splitBounds. */ |
|---|
| 414 | Node(const Array<_AABSPTree::Handle<T> * >& pt) : valueArray(pt) { |
|---|
| 415 | splitAxis = Vector3::X_AXIS; |
|---|
| 416 | splitLocation = 0; |
|---|
| 417 | for (int i = 0; i < 2; ++i) { |
|---|
| 418 | child[i] = NULL; |
|---|
| 419 | } |
|---|
| 420 | |
|---|
| 421 | boundsArray.resize(valueArray.size()); |
|---|
| 422 | for (int i = 0; i < valueArray.size(); ++i) { |
|---|
| 423 | boundsArray[i] = valueArray[i]->bounds; |
|---|
| 424 | } |
|---|
| 425 | } |
|---|
| 426 | |
|---|
| 427 | /** Deletes the children (but not the values) */ |
|---|
| 428 | ~Node() { |
|---|
| 429 | for (int i = 0; i < 2; ++i) { |
|---|
| 430 | delete child[i]; |
|---|
| 431 | } |
|---|
| 432 | } |
|---|
| 433 | |
|---|
| 434 | /** Returns true if this node is a leaf (no children) */ |
|---|
| 435 | inline bool isLeaf() const { |
|---|
| 436 | return (child[0] == NULL) && (child[1] == NULL); |
|---|
| 437 | } |
|---|
| 438 | |
|---|
| 439 | |
|---|
| 440 | /** |
|---|
| 441 | Recursively appends all handles and children's handles |
|---|
| 442 | to the array. |
|---|
| 443 | */ |
|---|
| 444 | void getHandles(Array<_AABSPTree::Handle<T> * >& handleArray) const { |
|---|
| 445 | handleArray.append(valueArray); |
|---|
| 446 | for (int i = 0; i < 2; ++i) { |
|---|
| 447 | if (child[i] != NULL) { |
|---|
| 448 | child[i]->getHandles(handleArray); |
|---|
| 449 | } |
|---|
| 450 | } |
|---|
| 451 | } |
|---|
| 452 | |
|---|
| 453 | void verifyNode(const Vector3& lo, const Vector3& hi) { |
|---|
| 454 | // debugPrintf("Verifying: split %d @ %f [%f, %f, %f], [%f, %f, %f]\n", |
|---|
| 455 | // splitAxis, splitLocation, lo.x, lo.y, lo.z, hi.x, hi.y, hi.z); |
|---|
| 456 | |
|---|
| 457 | debugAssert(lo == splitBounds.low()); |
|---|
| 458 | debugAssert(hi == splitBounds.high()); |
|---|
| 459 | |
|---|
| 460 | for (int i = 0; i < valueArray.length(); ++i) { |
|---|
| 461 | const AABox& b = valueArray[i]->bounds; |
|---|
| 462 | debugAssert(b == boundsArray[i]); |
|---|
| 463 | |
|---|
| 464 | for(int axis = 0; axis < 3; ++axis) { |
|---|
| 465 | debugAssert(b.low()[axis] <= b.high()[axis]); |
|---|
| 466 | debugAssert(b.low()[axis] >= lo[axis]); |
|---|
| 467 | debugAssert(b.high()[axis] <= hi[axis]); |
|---|
| 468 | } |
|---|
| 469 | } |
|---|
| 470 | |
|---|
| 471 | if (child[0] || child[1]) { |
|---|
| 472 | debugAssert(lo[splitAxis] < splitLocation); |
|---|
| 473 | debugAssert(hi[splitAxis] > splitLocation); |
|---|
| 474 | } |
|---|
| 475 | |
|---|
| 476 | Vector3 newLo = lo; |
|---|
| 477 | newLo[splitAxis] = splitLocation; |
|---|
| 478 | Vector3 newHi = hi; |
|---|
| 479 | newHi[splitAxis] = splitLocation; |
|---|
| 480 | |
|---|
| 481 | if (child[0] != NULL) { |
|---|
| 482 | child[0]->verifyNode(lo, newHi); |
|---|
| 483 | } |
|---|
| 484 | |
|---|
| 485 | if (child[1] != NULL) { |
|---|
| 486 | child[1]->verifyNode(newLo, hi); |
|---|
| 487 | } |
|---|
| 488 | } |
|---|
| 489 | |
|---|
| 490 | #if 0 |
|---|
| 491 | /** |
|---|
| 492 | Stores the locations of the splitting planes (the structure but not the content) |
|---|
| 493 | so that the tree can be quickly rebuilt from a previous configuration without |
|---|
| 494 | calling balance. |
|---|
| 495 | */ |
|---|
| 496 | static void serializeStructure(const Node* n, BinaryOutput& bo) { |
|---|
| 497 | if (n == NULL) { |
|---|
| 498 | bo.writeUInt8(0); |
|---|
| 499 | } else { |
|---|
| 500 | bo.writeUInt8(1); |
|---|
| 501 | n->splitBounds.serialize(bo); |
|---|
| 502 | serialize(n->splitAxis, bo); |
|---|
| 503 | bo.writeFloat32(n->splitLocation); |
|---|
| 504 | for (int c = 0; c < 2; ++c) { |
|---|
| 505 | serializeStructure(n->child[c], bo); |
|---|
| 506 | } |
|---|
| 507 | } |
|---|
| 508 | } |
|---|
| 509 | |
|---|
| 510 | /** Clears the member table */ |
|---|
| 511 | static Node* deserializeStructure(BinaryInput& bi) { |
|---|
| 512 | if (bi.readUInt8() == 0) { |
|---|
| 513 | return NULL; |
|---|
| 514 | } else { |
|---|
| 515 | Node* n = new Node(); |
|---|
| 516 | n->splitBounds.deserialize(bi); |
|---|
| 517 | deserialize(n->splitAxis, bi); |
|---|
| 518 | n->splitLocation = bi.readFloat32(); |
|---|
| 519 | for (int c = 0; c < 2; ++c) { |
|---|
| 520 | n->child[c] = deserializeStructure(bi); |
|---|
| 521 | } |
|---|
| 522 | } |
|---|
| 523 | } |
|---|
| 524 | #endif |
|---|
| 525 | /** Returns the deepest node that completely contains bounds. */ |
|---|
| 526 | Node* findDeepestContainingNode(const AABox& bounds) { |
|---|
| 527 | |
|---|
| 528 | // See which side of the splitting plane the bounds are on |
|---|
| 529 | if (bounds.high()[splitAxis] < splitLocation) { |
|---|
| 530 | // Bounds are on the low side. Recurse into the child |
|---|
| 531 | // if it exists. |
|---|
| 532 | if (child[0] != NULL) { |
|---|
| 533 | return child[0]->findDeepestContainingNode(bounds); |
|---|
| 534 | } |
|---|
| 535 | } else if (bounds.low()[splitAxis] > splitLocation) { |
|---|
| 536 | // Bounds are on the high side, recurse into the child |
|---|
| 537 | // if it exists. |
|---|
| 538 | if (child[1] != NULL) { |
|---|
| 539 | return child[1]->findDeepestContainingNode(bounds); |
|---|
| 540 | } |
|---|
| 541 | } |
|---|
| 542 | |
|---|
| 543 | // There was no containing child, so this node is the |
|---|
| 544 | // deepest containing node. |
|---|
| 545 | return this; |
|---|
| 546 | } |
|---|
| 547 | |
|---|
| 548 | |
|---|
| 549 | /** Appends all members that intersect the box. |
|---|
| 550 | If useSphere is true, members that pass the box test |
|---|
| 551 | face a second test against the sphere. */ |
|---|
| 552 | void getIntersectingMembers( |
|---|
| 553 | const AABox& box, |
|---|
| 554 | const Sphere& sphere, |
|---|
| 555 | Array<T>& members, |
|---|
| 556 | bool useSphere) const { |
|---|
| 557 | |
|---|
| 558 | // Test all values at this node |
|---|
| 559 | for (int v = 0; v < boundsArray.size(); ++v) { |
|---|
| 560 | const AABox& bounds = boundsArray[v]; |
|---|
| 561 | if (bounds.intersects(box) && |
|---|
| 562 | (! useSphere || bounds.intersects(sphere))) { |
|---|
| 563 | members.append(valueArray[v]->value); |
|---|
| 564 | } |
|---|
| 565 | } |
|---|
| 566 | |
|---|
| 567 | // If the left child overlaps the box, recurse into it |
|---|
| 568 | if ((child[0] != NULL) && (box.low()[splitAxis] < splitLocation)) { |
|---|
| 569 | child[0]->getIntersectingMembers(box, sphere, members, useSphere); |
|---|
| 570 | } |
|---|
| 571 | |
|---|
| 572 | // If the right child overlaps the box, recurse into it |
|---|
| 573 | if ((child[1] != NULL) && (box.high()[splitAxis] > splitLocation)) { |
|---|
| 574 | child[1]->getIntersectingMembers(box, sphere, members, useSphere); |
|---|
| 575 | } |
|---|
| 576 | } |
|---|
| 577 | |
|---|
| 578 | /** |
|---|
| 579 | Recurse through the tree, assigning splitBounds fields. |
|---|
| 580 | */ |
|---|
| 581 | void assignSplitBounds(const AABox& myBounds) { |
|---|
| 582 | splitBounds = myBounds; |
|---|
| 583 | |
|---|
| 584 | AABox childBounds[2]; |
|---|
| 585 | myBounds.split(splitAxis, splitLocation, childBounds[0], childBounds[1]); |
|---|
| 586 | |
|---|
| 587 | # if defined(G3D_DEBUG) && defined(VERIFY_TREE) |
|---|
| 588 | // Verify the split |
|---|
| 589 | for (int v = 0; v < boundsArray.size(); ++v) { |
|---|
| 590 | const AABox& bounds = boundsArray[v]; |
|---|
| 591 | debugAssert(myBounds.contains(bounds)); |
|---|
| 592 | } |
|---|
| 593 | # endif |
|---|
| 594 | |
|---|
| 595 | for (int c = 0; c < 2; ++c) { |
|---|
| 596 | if (child[c]) { |
|---|
| 597 | child[c]->assignSplitBounds(childBounds[c]); |
|---|
| 598 | } |
|---|
| 599 | } |
|---|
| 600 | } |
|---|
| 601 | |
|---|
| 602 | /** Returns true if the ray intersects this node */ |
|---|
| 603 | bool intersects(const Ray& ray, float distance) const { |
|---|
| 604 | // See if the ray will ever hit this node or its children |
|---|
| 605 | Vector3 location; |
|---|
| 606 | bool alreadyInsideBounds = false; |
|---|
| 607 | bool rayWillHitBounds = |
|---|
| 608 | VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox( |
|---|
| 609 | ray.origin, ray.direction, splitBounds, location, alreadyInsideBounds); |
|---|
| 610 | |
|---|
| 611 | bool canHitThisNode = (alreadyInsideBounds || |
|---|
| 612 | (rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance)))); |
|---|
| 613 | |
|---|
| 614 | return canHitThisNode; |
|---|
| 615 | } |
|---|
| 616 | |
|---|
| 617 | template<typename RayCallback> |
|---|
| 618 | void intersectRay( |
|---|
| 619 | const Ray& ray, |
|---|
| 620 | RayCallback& intersectCallback, |
|---|
| 621 | float& distance, |
|---|
| 622 | bool pStopAtFirstHit, |
|---|
| 623 | bool intersectCallbackIsFast) const { |
|---|
| 624 | float enterDistance = distance; |
|---|
| 625 | |
|---|
| 626 | if (! intersects(ray, distance)) { |
|---|
| 627 | // The ray doesn't hit this node, so it can't hit the children of the node. |
|---|
| 628 | return; |
|---|
| 629 | } |
|---|
| 630 | |
|---|
| 631 | // Test for intersection against every object at this node. |
|---|
| 632 | for (int v = 0; v < valueArray.size(); ++v) { |
|---|
| 633 | bool canHitThisObject = true; |
|---|
| 634 | |
|---|
| 635 | if (! intersectCallbackIsFast) { |
|---|
| 636 | // See if |
|---|
| 637 | Vector3 location; |
|---|
| 638 | const AABox& bounds = boundsArray[v]; |
|---|
| 639 | bool alreadyInsideBounds = false; |
|---|
| 640 | bool rayWillHitBounds = |
|---|
| 641 | VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox( |
|---|
| 642 | ray.origin, ray.direction, bounds, location, alreadyInsideBounds); |
|---|
| 643 | |
|---|
| 644 | canHitThisObject = (alreadyInsideBounds || |
|---|
| 645 | (rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance)))); |
|---|
| 646 | } |
|---|
| 647 | |
|---|
| 648 | if (canHitThisObject) { |
|---|
| 649 | // It is possible that this ray hits this object. Look for the intersection using the |
|---|
| 650 | // callback. |
|---|
| 651 | const T& value = valueArray[v]->value; |
|---|
| 652 | intersectCallback(ray, value, pStopAtFirstHit, distance); |
|---|
| 653 | } |
|---|
| 654 | if(pStopAtFirstHit && distance < enterDistance) |
|---|
| 655 | return; |
|---|
| 656 | } |
|---|
| 657 | |
|---|
| 658 | // There are three cases to consider next: |
|---|
| 659 | // |
|---|
| 660 | // 1. the ray can start on one side of the splitting plane and never enter the other, |
|---|
| 661 | // 2. the ray can start on one side and enter the other, and |
|---|
| 662 | // 3. the ray can travel exactly down the splitting plane |
|---|
| 663 | |
|---|
| 664 | enum {NONE = -1}; |
|---|
| 665 | int firstChild = NONE; |
|---|
| 666 | int secondChild = NONE; |
|---|
| 667 | |
|---|
| 668 | if (ray.origin[splitAxis] < splitLocation) { |
|---|
| 669 | |
|---|
| 670 | // The ray starts on the small side |
|---|
| 671 | firstChild = 0; |
|---|
| 672 | |
|---|
| 673 | if (ray.direction[splitAxis] > 0) { |
|---|
| 674 | // The ray will eventually reach the other side |
|---|
| 675 | secondChild = 1; |
|---|
| 676 | } |
|---|
| 677 | |
|---|
| 678 | } else if (ray.origin[splitAxis] > splitLocation) { |
|---|
| 679 | |
|---|
| 680 | // The ray starts on the large side |
|---|
| 681 | firstChild = 1; |
|---|
| 682 | |
|---|
| 683 | if (ray.direction[splitAxis] < 0) { |
|---|
| 684 | secondChild = 0; |
|---|
| 685 | } |
|---|
| 686 | } else { |
|---|
| 687 | // The ray starts on the splitting plane |
|---|
| 688 | if (ray.direction[splitAxis] < 0) { |
|---|
| 689 | // ...and goes to the small side |
|---|
| 690 | firstChild = 0; |
|---|
| 691 | } else if (ray.direction[splitAxis] > 0) { |
|---|
| 692 | // ...and goes to the large side |
|---|
| 693 | firstChild = 1; |
|---|
| 694 | } |
|---|
| 695 | } |
|---|
| 696 | |
|---|
| 697 | // Test on the side closer to the ray origin. |
|---|
| 698 | if ((firstChild != NONE) && child[firstChild]) { |
|---|
| 699 | child[firstChild]->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast); |
|---|
| 700 | if(pStopAtFirstHit && distance < enterDistance) |
|---|
| 701 | return; |
|---|
| 702 | } |
|---|
| 703 | |
|---|
| 704 | if (ray.direction[splitAxis] != 0) { |
|---|
| 705 | // See if there was an intersection before hitting the splitting plane. |
|---|
| 706 | // If so, there is no need to look on the far side and recursion terminates. |
|---|
| 707 | float distanceToSplittingPlane = (splitLocation - ray.origin[splitAxis]) / ray.direction[splitAxis]; |
|---|
| 708 | if (distanceToSplittingPlane > distance) { |
|---|
| 709 | // We aren't going to hit anything else before hitting the splitting plane, |
|---|
| 710 | // so don't bother looking on the far side of the splitting plane at the other |
|---|
| 711 | // child. |
|---|
| 712 | return; |
|---|
| 713 | } |
|---|
| 714 | } |
|---|
| 715 | |
|---|
| 716 | // Test on the side farther from the ray origin. |
|---|
| 717 | if ((secondChild != NONE) && child[secondChild]) { |
|---|
| 718 | child[secondChild]->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast); |
|---|
| 719 | } |
|---|
| 720 | |
|---|
| 721 | } |
|---|
| 722 | }; |
|---|
| 723 | |
|---|
| 724 | |
|---|
| 725 | /** |
|---|
| 726 | Recursively subdivides the subarray. |
|---|
| 727 | |
|---|
| 728 | Clears the source array as soon as it is no longer needed. |
|---|
| 729 | |
|---|
| 730 | Call assignSplitBounds() on the root node after making a tree. |
|---|
| 731 | */ |
|---|
| 732 | Node* makeNode( |
|---|
| 733 | Array<_AABSPTree::Handle<T> * >& source, |
|---|
| 734 | int valuesPerNode, |
|---|
| 735 | int numMeanSplits, |
|---|
| 736 | Array<_AABSPTree::Handle<T> * >& temp) { |
|---|
| 737 | |
|---|
| 738 | Node* node = NULL; |
|---|
| 739 | |
|---|
| 740 | if (source.size() <= valuesPerNode) { |
|---|
| 741 | // Make a new leaf node |
|---|
| 742 | node = new Node(source); |
|---|
| 743 | |
|---|
| 744 | // Set the pointers in the memberTable |
|---|
| 745 | for (int i = 0; i < source.size(); ++i) { |
|---|
| 746 | memberTable.set(Member(source[i]), node); |
|---|
| 747 | } |
|---|
| 748 | source.clear(); |
|---|
| 749 | |
|---|
| 750 | } else { |
|---|
| 751 | // Make a new internal node |
|---|
| 752 | node = new Node(); |
|---|
| 753 | |
|---|
| 754 | const AABox bounds = computeBounds(source, 0, source.size() - 1); |
|---|
| 755 | const Vector3 extent = bounds.high() - bounds.low(); |
|---|
| 756 | |
|---|
| 757 | Vector3::Axis splitAxis = extent.primaryAxis(); |
|---|
| 758 | |
|---|
| 759 | float splitLocation; |
|---|
| 760 | |
|---|
| 761 | // Arrays for holding the children |
|---|
| 762 | Array<_AABSPTree::Handle<T> * > lt, gt; |
|---|
| 763 | |
|---|
| 764 | if (numMeanSplits <= 0) { |
|---|
| 765 | |
|---|
| 766 | source.medianPartition(lt, node->valueArray, gt, temp, CenterComparator(splitAxis)); |
|---|
| 767 | |
|---|
| 768 | // Choose the split location to be the center of whatever fell in the center |
|---|
| 769 | splitLocation = node->valueArray[0]->center[splitAxis]; |
|---|
| 770 | |
|---|
| 771 | // Some of the elements in the lt or gt array might really overlap the split location. |
|---|
| 772 | // Move them as needed. |
|---|
| 773 | for (int i = 0; i < lt.size(); ++i) { |
|---|
| 774 | const AABox& bounds = lt[i]->bounds; |
|---|
| 775 | if ((bounds.low()[splitAxis] <= splitLocation) && (bounds.high()[splitAxis] >= splitLocation)) { |
|---|
| 776 | node->valueArray.append(lt[i]); |
|---|
| 777 | // Remove this element and process the new one that |
|---|
| 778 | // is swapped in in its place. |
|---|
| 779 | lt.fastRemove(i); --i; |
|---|
| 780 | } |
|---|
| 781 | } |
|---|
| 782 | |
|---|
| 783 | for (int i = 0; i < gt.size(); ++i) { |
|---|
| 784 | const AABox& bounds = gt[i]->bounds; |
|---|
| 785 | if ((bounds.low()[splitAxis] <= splitLocation) && (bounds.high()[splitAxis] >= splitLocation)) { |
|---|
| 786 | node->valueArray.append(gt[i]); |
|---|
| 787 | // Remove this element and process the new one that |
|---|
| 788 | // is swapped in in its place. |
|---|
| 789 | gt.fastRemove(i); --i; |
|---|
| 790 | } |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | if ((node->valueArray.size() > (source.size() / 2)) && |
|---|
| 794 | (source.size() > 6)) { |
|---|
| 795 | // This was a bad partition; we ended up putting the splitting plane right in the middle of most of the |
|---|
| 796 | // objects. We could try to split on a different axis, or use a different partition (e.g., the extents mean, |
|---|
| 797 | // or geometric mean). This implementation falls back on the extents mean, since that case is already handled |
|---|
| 798 | // below. |
|---|
| 799 | numMeanSplits = 1; |
|---|
| 800 | } |
|---|
| 801 | } |
|---|
| 802 | |
|---|
| 803 | // Note: numMeanSplits may have been increased by the code in the previous case above in order to |
|---|
| 804 | // force a re-partition. |
|---|
| 805 | |
|---|
| 806 | if (numMeanSplits > 0) { |
|---|
| 807 | // Split along the mean |
|---|
| 808 | splitLocation = (bounds.high()[splitAxis] + |
|---|
| 809 | bounds.low()[splitAxis]) / 2.0; |
|---|
| 810 | |
|---|
| 811 | source.partition(NULL, lt, node->valueArray, gt, Comparator(splitAxis, splitLocation)); |
|---|
| 812 | |
|---|
| 813 | // The Comparator ensures that elements are strictly on the correct side of the split |
|---|
| 814 | } |
|---|
| 815 | |
|---|
| 816 | |
|---|
| 817 | # if defined(G3D_DEBUG) && defined(VERIFY_TREE) |
|---|
| 818 | debugAssert(lt.size() + node->valueArray.size() + gt.size() == source.size()); |
|---|
| 819 | // Verify that all objects ended up on the correct side of the split. |
|---|
| 820 | // (i.e., make sure that the Array partition was correct) |
|---|
| 821 | for (int i = 0; i < lt.size(); ++i) { |
|---|
| 822 | const AABox& bounds = lt[i]->bounds; |
|---|
| 823 | debugAssert(bounds.high()[splitAxis] < splitLocation); |
|---|
| 824 | } |
|---|
| 825 | |
|---|
| 826 | for (int i = 0; i < gt.size(); ++i) { |
|---|
| 827 | const AABox& bounds = gt[i]->bounds; |
|---|
| 828 | debugAssert(bounds.low()[splitAxis] > splitLocation); |
|---|
| 829 | } |
|---|
| 830 | |
|---|
| 831 | for (int i = 0; i < node->valueArray.size(); ++i) { |
|---|
| 832 | const AABox& bounds = node->valueArray[i]->bounds; |
|---|
| 833 | debugAssert(bounds.high()[splitAxis] >= splitLocation); |
|---|
| 834 | debugAssert(bounds.low()[splitAxis] <= splitLocation); |
|---|
| 835 | } |
|---|
| 836 | # endif |
|---|
| 837 | |
|---|
| 838 | // The source array is no longer needed |
|---|
| 839 | source.clear(); |
|---|
| 840 | |
|---|
| 841 | node->splitAxis = splitAxis; |
|---|
| 842 | node->splitLocation = splitLocation; |
|---|
| 843 | |
|---|
| 844 | // Update the bounds array and member table |
|---|
| 845 | node->boundsArray.resize(node->valueArray.size()); |
|---|
| 846 | for (int i = 0; i < node->valueArray.size(); ++i) { |
|---|
| 847 | _AABSPTree::Handle<T> * v = node->valueArray[i]; |
|---|
| 848 | node->boundsArray[i] = v->bounds; |
|---|
| 849 | memberTable.set(Member(v), node); |
|---|
| 850 | } |
|---|
| 851 | |
|---|
| 852 | if (lt.size() > 0) { |
|---|
| 853 | node->child[0] = makeNode(lt, valuesPerNode, numMeanSplits - 1, temp); |
|---|
| 854 | } |
|---|
| 855 | |
|---|
| 856 | if (gt.size() > 0) { |
|---|
| 857 | node->child[1] = makeNode(gt, valuesPerNode, numMeanSplits - 1, temp); |
|---|
| 858 | } |
|---|
| 859 | |
|---|
| 860 | } |
|---|
| 861 | |
|---|
| 862 | return node; |
|---|
| 863 | } |
|---|
| 864 | |
|---|
| 865 | /** |
|---|
| 866 | Recursively clone the passed in node tree, setting |
|---|
| 867 | pointers for members in the memberTable as appropriate. |
|---|
| 868 | called by the assignment operator. |
|---|
| 869 | */ |
|---|
| 870 | Node* cloneTree(Node* src) { |
|---|
| 871 | Node* dst = new Node(*src); |
|---|
| 872 | |
|---|
| 873 | // Make back pointers |
|---|
| 874 | for (int i = 0; i < dst->valueArray.size(); ++i) { |
|---|
| 875 | memberTable.set(Member(dst->valueArray[i]), dst); |
|---|
| 876 | } |
|---|
| 877 | |
|---|
| 878 | // Clone children |
|---|
| 879 | for (int i = 0; i < 2; ++i) { |
|---|
| 880 | if (src->child[i] != NULL) { |
|---|
| 881 | dst->child[i] = cloneTree(src->child[i]); |
|---|
| 882 | } |
|---|
| 883 | } |
|---|
| 884 | |
|---|
| 885 | return dst; |
|---|
| 886 | } |
|---|
| 887 | |
|---|
| 888 | /** |
|---|
| 889 | Wrapper for a Handle; used to create a memberTable that acts like Table<Handle, Node*> but |
|---|
| 890 | stores only Handle* internally to avoid memory copies. |
|---|
| 891 | */ |
|---|
| 892 | typedef _internal::Indirector<_AABSPTree::Handle<T> > Member; |
|---|
| 893 | |
|---|
| 894 | typedef Table<Member, Node*> MemberTable; |
|---|
| 895 | |
|---|
| 896 | /** Maps members to the node containing them */ |
|---|
| 897 | MemberTable memberTable; |
|---|
| 898 | |
|---|
| 899 | Node* root; |
|---|
| 900 | |
|---|
| 901 | public: |
|---|
| 902 | |
|---|
| 903 | /** To construct a balanced tree, insert the elements and then call |
|---|
| 904 | AABSPTree::balance(). */ |
|---|
| 905 | AABSPTree() : root(NULL) {} |
|---|
| 906 | |
|---|
| 907 | |
|---|
| 908 | AABSPTree(const AABSPTree& src) : root(NULL) { |
|---|
| 909 | *this = src; |
|---|
| 910 | } |
|---|
| 911 | |
|---|
| 912 | |
|---|
| 913 | AABSPTree& operator=(const AABSPTree& src) { |
|---|
| 914 | delete root; |
|---|
| 915 | // Clone tree takes care of filling out the memberTable. |
|---|
| 916 | root = cloneTree(src.root); |
|---|
| 917 | return *this; |
|---|
| 918 | } |
|---|
| 919 | |
|---|
| 920 | |
|---|
| 921 | ~AABSPTree() { |
|---|
| 922 | clear(); |
|---|
| 923 | } |
|---|
| 924 | |
|---|
| 925 | /** |
|---|
| 926 | Throws out all elements of the set. |
|---|
| 927 | */ |
|---|
| 928 | void clear() { |
|---|
| 929 | typedef typename Table<_internal::Indirector<_AABSPTree::Handle<T> >, Node* >::Iterator It; |
|---|
| 930 | |
|---|
| 931 | // Delete all handles stored in the member table |
|---|
| 932 | It cur = memberTable.begin(); |
|---|
| 933 | It end = memberTable.end(); |
|---|
| 934 | while (cur != end) { |
|---|
| 935 | delete cur->key.handle; |
|---|
| 936 | cur->key.handle = NULL; |
|---|
| 937 | ++cur; |
|---|
| 938 | } |
|---|
| 939 | memberTable.clear(); |
|---|
| 940 | |
|---|
| 941 | // Delete the tree structure itself |
|---|
| 942 | delete root; |
|---|
| 943 | root = NULL; |
|---|
| 944 | } |
|---|
| 945 | |
|---|
| 946 | size_t size() const { |
|---|
| 947 | return memberTable.size(); |
|---|
| 948 | } |
|---|
| 949 | |
|---|
| 950 | /** |
|---|
| 951 | Inserts an object into the set if it is not |
|---|
| 952 | already present. O(log n) time. Does not |
|---|
| 953 | cause the tree to be balanced. |
|---|
| 954 | */ |
|---|
| 955 | void insert(const T& value) { |
|---|
| 956 | if (contains(value)) { |
|---|
| 957 | // Already in the set |
|---|
| 958 | return; |
|---|
| 959 | } |
|---|
| 960 | |
|---|
| 961 | _AABSPTree::Handle<T>* h = new _AABSPTree::Handle<T>(value); |
|---|
| 962 | |
|---|
| 963 | if (root == NULL) { |
|---|
| 964 | // This is the first node; create a root node |
|---|
| 965 | root = new Node(); |
|---|
| 966 | } |
|---|
| 967 | |
|---|
| 968 | Node* node = root->findDeepestContainingNode(h->bounds); |
|---|
| 969 | |
|---|
| 970 | // Insert into the node |
|---|
| 971 | node->valueArray.append(h); |
|---|
| 972 | node->boundsArray.append(h->bounds); |
|---|
| 973 | |
|---|
| 974 | // Insert into the node table |
|---|
| 975 | Member m(h); |
|---|
| 976 | memberTable.set(m, node); |
|---|
| 977 | } |
|---|
| 978 | |
|---|
| 979 | /** Inserts each elements in the array in turn. If the tree |
|---|
| 980 | begins empty (no structure and no elements), this is faster |
|---|
| 981 | than inserting each element in turn. You still need to balance |
|---|
| 982 | the tree at the end.*/ |
|---|
| 983 | void insert(const Array<T>& valueArray) { |
|---|
| 984 | if (root == NULL) { |
|---|
| 985 | // Optimized case for an empty tree; don't bother |
|---|
| 986 | // searching or reallocating the root node's valueArray |
|---|
| 987 | // as we incrementally insert. |
|---|
| 988 | root = new Node(); |
|---|
| 989 | root->valueArray.resize(valueArray.size()); |
|---|
| 990 | root->boundsArray.resize(root->valueArray.size()); |
|---|
| 991 | for (int i = 0; i < valueArray.size(); ++i) { |
|---|
| 992 | // Insert in opposite order so that we have the exact same |
|---|
| 993 | // data structure as if we inserted each (i.e., order is reversed |
|---|
| 994 | // from array). |
|---|
| 995 | _AABSPTree::Handle<T>* h = new _AABSPTree::Handle<T>(valueArray[i]); |
|---|
| 996 | int j = valueArray.size() - i - 1; |
|---|
| 997 | root->valueArray[j] = h; |
|---|
| 998 | root->boundsArray[j] = h->bounds; |
|---|
| 999 | memberTable.set(Member(h), root); |
|---|
| 1000 | } |
|---|
| 1001 | |
|---|
| 1002 | } else { |
|---|
| 1003 | // Insert at appropriate tree depth. |
|---|
| 1004 | for (int i = 0; i < valueArray.size(); ++i) { |
|---|
| 1005 | insert(valueArray[i]); |
|---|
| 1006 | } |
|---|
| 1007 | } |
|---|
| 1008 | } |
|---|
| 1009 | |
|---|
| 1010 | |
|---|
| 1011 | /** |
|---|
| 1012 | Returns true if this object is in the set, otherwise |
|---|
| 1013 | returns false. O(1) time. |
|---|
| 1014 | */ |
|---|
| 1015 | bool contains(const T& value) { |
|---|
| 1016 | // Temporarily create a handle and member |
|---|
| 1017 | _AABSPTree::Handle<T> h(value); |
|---|
| 1018 | return memberTable.containsKey(Member(&h)); |
|---|
| 1019 | } |
|---|
| 1020 | |
|---|
| 1021 | |
|---|
| 1022 | /** |
|---|
| 1023 | Removes an object from the set in O(1) time. |
|---|
| 1024 | It is an error to remove members that are not already |
|---|
| 1025 | present. May unbalance the tree. |
|---|
| 1026 | |
|---|
| 1027 | Removing an element never causes a node (split plane) to be removed... |
|---|
| 1028 | nodes are only changed when the tree is rebalanced. This behavior |
|---|
| 1029 | is desirable because it allows the split planes to be serialized, |
|---|
| 1030 | and then deserialized into an empty tree which can be repopulated. |
|---|
| 1031 | */ |
|---|
| 1032 | void remove(const T& value) { |
|---|
| 1033 | debugAssertM(contains(value), |
|---|
| 1034 | "Tried to remove an element from a " |
|---|
| 1035 | "AABSPTree that was not present"); |
|---|
| 1036 | |
|---|
| 1037 | // Get the list of elements at the node |
|---|
| 1038 | _AABSPTree::Handle<T> h(value); |
|---|
| 1039 | Member m(&h); |
|---|
| 1040 | |
|---|
| 1041 | Array<_AABSPTree::Handle<T> * >& list = memberTable[m]->valueArray; |
|---|
| 1042 | |
|---|
| 1043 | _AABSPTree::Handle<T>* ptr = NULL; |
|---|
| 1044 | |
|---|
| 1045 | // Find the element and remove it |
|---|
| 1046 | for (int i = list.length() - 1; i >= 0; --i) { |
|---|
| 1047 | if (list[i]->value == value) { |
|---|
| 1048 | // This was the element. Grab the pointer so that |
|---|
| 1049 | // we can delete it below |
|---|
| 1050 | ptr = list[i]; |
|---|
| 1051 | |
|---|
| 1052 | // Remove the handle from the node |
|---|
| 1053 | list.fastRemove(i); |
|---|
| 1054 | |
|---|
| 1055 | // Remove the corresponding bounds |
|---|
| 1056 | memberTable[m]->boundsArray.fastRemove(i); |
|---|
| 1057 | break; |
|---|
| 1058 | } |
|---|
| 1059 | } |
|---|
| 1060 | |
|---|
| 1061 | // Remove the member |
|---|
| 1062 | memberTable.remove(m); |
|---|
| 1063 | |
|---|
| 1064 | // Delete the handle data structure |
|---|
| 1065 | delete ptr; |
|---|
| 1066 | ptr = NULL; |
|---|
| 1067 | } |
|---|
| 1068 | |
|---|
| 1069 | |
|---|
| 1070 | /** |
|---|
| 1071 | If the element is in the set, it is removed. |
|---|
| 1072 | The element is then inserted. |
|---|
| 1073 | |
|---|
| 1074 | This is useful when the == and hashCode methods |
|---|
| 1075 | on <I>T</I> are independent of the bounds. In |
|---|
| 1076 | that case, you may call update(v) to insert an |
|---|
| 1077 | element for the first time and call update(v) |
|---|
| 1078 | again every time it moves to keep the tree |
|---|
| 1079 | up to date. |
|---|
| 1080 | */ |
|---|
| 1081 | void update(const T& value) { |
|---|
| 1082 | if (contains(value)) { |
|---|
| 1083 | remove(value); |
|---|
| 1084 | } |
|---|
| 1085 | insert(value); |
|---|
| 1086 | } |
|---|
| 1087 | |
|---|
| 1088 | |
|---|
| 1089 | /** |
|---|
| 1090 | Rebalances the tree (slow). Call when objects |
|---|
| 1091 | have moved substantially from their original positions |
|---|
| 1092 | (which unbalances the tree and causes the spatial |
|---|
| 1093 | queries to be slow). |
|---|
| 1094 | |
|---|
| 1095 | @param valuesPerNode Maximum number of elements to put at |
|---|
| 1096 | a node. |
|---|
| 1097 | |
|---|
| 1098 | @param numMeanSplits numMeanSplits = 0 gives a |
|---|
| 1099 | fully axis aligned BSP-tree, where the balance operation attempts to balance |
|---|
| 1100 | the tree so that every splitting plane has an equal number of left |
|---|
| 1101 | and right children (i.e. it is a <B>median</B> split along that axis). |
|---|
| 1102 | This tends to maximize average performance. |
|---|
| 1103 | |
|---|
| 1104 | You can override this behavior by |
|---|
| 1105 | setting a number of <B>mean</B> (average) splits. numMeanSplits = MAX_INT |
|---|
| 1106 | creates a full oct-tree, which tends to optimize peak performance at the expense of |
|---|
| 1107 | average performance. It tends to have better clustering behavior when |
|---|
| 1108 | members are not uniformly distributed. |
|---|
| 1109 | */ |
|---|
| 1110 | void balance(int valuesPerNode = 5, int numMeanSplits = 3) { |
|---|
| 1111 | if (root == NULL) { |
|---|
| 1112 | // Tree is empty |
|---|
| 1113 | return; |
|---|
| 1114 | } |
|---|
| 1115 | |
|---|
| 1116 | // Get all handles and delete the old tree structure |
|---|
| 1117 | Node* oldRoot = root; |
|---|
| 1118 | for (int c = 0; c < 2; ++c) { |
|---|
| 1119 | if (root->child[c] != NULL) { |
|---|
| 1120 | root->child[c]->getHandles(root->valueArray); |
|---|
| 1121 | |
|---|
| 1122 | // Delete the child; this will delete all structure below it |
|---|
| 1123 | delete root->child[c]; |
|---|
| 1124 | root->child[c] = NULL; |
|---|
| 1125 | } |
|---|
| 1126 | } |
|---|
| 1127 | |
|---|
| 1128 | Array<_AABSPTree::Handle<T> * > temp; |
|---|
| 1129 | // Make a new root. Work with a copy of the value array because |
|---|
| 1130 | // makeNode clears the source array as it progresses |
|---|
| 1131 | Array<_AABSPTree::Handle<T> * > copy(oldRoot->valueArray); |
|---|
| 1132 | root = makeNode(copy, valuesPerNode, numMeanSplits, temp); |
|---|
| 1133 | |
|---|
| 1134 | // Throw away the old root node |
|---|
| 1135 | delete oldRoot; |
|---|
| 1136 | oldRoot = NULL; |
|---|
| 1137 | |
|---|
| 1138 | // Walk the tree, assigning splitBounds. We start with unbounded |
|---|
| 1139 | // space. This will override the current member table. |
|---|
| 1140 | root->assignSplitBounds(AABox::maxFinite()); |
|---|
| 1141 | |
|---|
| 1142 | # ifdef _DEBUG |
|---|
| 1143 | // Ensure that the balanced tree is till correct |
|---|
| 1144 | root->verifyNode(Vector3::minFinite(), Vector3::maxFinite()); |
|---|
| 1145 | # endif |
|---|
| 1146 | } |
|---|
| 1147 | |
|---|
| 1148 | protected: |
|---|
| 1149 | |
|---|
| 1150 | /** |
|---|
| 1151 | @param parentMask The mask that this node returned from culledBy. |
|---|
| 1152 | */ |
|---|
| 1153 | static void getIntersectingMembers( |
|---|
| 1154 | const Array<Plane>& plane, |
|---|
| 1155 | Array<T>& members, |
|---|
| 1156 | Node* node, |
|---|
| 1157 | uint32 parentMask) { |
|---|
| 1158 | |
|---|
| 1159 | int dummy; |
|---|
| 1160 | |
|---|
| 1161 | if (parentMask == 0) { |
|---|
| 1162 | // None of these planes can cull anything |
|---|
| 1163 | for (int v = node->valueArray.size() - 1; v >= 0; --v) { |
|---|
| 1164 | members.append(node->valueArray[v]->value); |
|---|
| 1165 | } |
|---|
| 1166 | |
|---|
| 1167 | // Iterate through child nodes |
|---|
| 1168 | for (int c = 0; c < 2; ++c) { |
|---|
| 1169 | if (node->child[c]) { |
|---|
| 1170 | getIntersectingMembers(plane, members, node->child[c], 0); |
|---|
| 1171 | } |
|---|
| 1172 | } |
|---|
| 1173 | } else { |
|---|
| 1174 | |
|---|
| 1175 | // Test values at this node against remaining planes |
|---|
| 1176 | for (int v = node->boundsArray.size() - 1; v >= 0; --v) { |
|---|
| 1177 | if (! node->boundsArray[v].culledBy(plane, dummy, parentMask)) { |
|---|
| 1178 | members.append(node->valueArray[v]->value); |
|---|
| 1179 | } |
|---|
| 1180 | } |
|---|
| 1181 | |
|---|
| 1182 | uint32 childMask = 0xFFFFFF; |
|---|
| 1183 | |
|---|
| 1184 | // Iterate through child nodes |
|---|
| 1185 | for (int c = 0; c < 2; ++c) { |
|---|
| 1186 | if (node->child[c] && |
|---|
| 1187 | ! node->child[c]->splitBounds.culledBy(plane, dummy, parentMask, childMask)) { |
|---|
| 1188 | // This node was not culled |
|---|
| 1189 | getIntersectingMembers(plane, members, node->child[c], childMask); |
|---|
| 1190 | } |
|---|
| 1191 | } |
|---|
| 1192 | } |
|---|
| 1193 | } |
|---|
| 1194 | |
|---|
| 1195 | public: |
|---|
| 1196 | |
|---|
| 1197 | /** |
|---|
| 1198 | Returns all members inside the set of planes. |
|---|
| 1199 | @param members The results are appended to this array. |
|---|
| 1200 | */ |
|---|
| 1201 | void getIntersectingMembers(const Array<Plane>& plane, Array<T>& members) const { |
|---|
| 1202 | if (root == NULL) { |
|---|
| 1203 | return; |
|---|
| 1204 | } |
|---|
| 1205 | |
|---|
| 1206 | getIntersectingMembers(plane, members, root, 0xFFFFFF); |
|---|
| 1207 | } |
|---|
| 1208 | |
|---|
| 1209 | /** |
|---|
| 1210 | Typically used to find all visible |
|---|
| 1211 | objects inside the view frustum (see also GCamera::getClipPlanes)... i.e. all objects |
|---|
| 1212 | <B>not<B> culled by frustum. |
|---|
| 1213 | |
|---|
| 1214 | Example: |
|---|
| 1215 | <PRE> |
|---|
| 1216 | Array<Object*> visible; |
|---|
| 1217 | tree.getIntersectingMembers(camera.frustum(), visible); |
|---|
| 1218 | // ... Draw all objects in the visible array. |
|---|
| 1219 | </PRE> |
|---|
| 1220 | @param members The results are appended to this array. |
|---|
| 1221 | */ |
|---|
| 1222 | void getIntersectingMembers(const GCamera::Frustum& frustum, Array<T>& members) const { |
|---|
| 1223 | Array<Plane> plane; |
|---|
| 1224 | |
|---|
| 1225 | for (int i = 0; i < frustum.faceArray.size(); ++i) { |
|---|
| 1226 | plane.append(frustum.faceArray[i].plane); |
|---|
| 1227 | } |
|---|
| 1228 | |
|---|
| 1229 | getIntersectingMembers(plane, members); |
|---|
| 1230 | } |
|---|
| 1231 | |
|---|
| 1232 | /** |
|---|
| 1233 | C++ STL style iterator variable. See beginBoxIntersection(). |
|---|
| 1234 | The iterator overloads the -> (dereference) operator, so this |
|---|
| 1235 | acts like a pointer to the current member. |
|---|
| 1236 | */ |
|---|
| 1237 | // This iterator turns Node::getIntersectingMembers into a |
|---|
| 1238 | // coroutine. It first translates that method from recursive to |
|---|
| 1239 | // stack based, then captures the system state (analogous to a Scheme |
|---|
| 1240 | // continuation) after each element is appended to the member array, |
|---|
| 1241 | // and allowing the computation to be restarted. |
|---|
| 1242 | class BoxIntersectionIterator { |
|---|
| 1243 | private: |
|---|
| 1244 | friend class AABSPTree<T>; |
|---|
| 1245 | |
|---|
| 1246 | /** True if this is the "end" iterator instance */ |
|---|
| 1247 | bool isEnd; |
|---|
| 1248 | |
|---|
| 1249 | /** The box that we're testing against. */ |
|---|
| 1250 | AABox box; |
|---|
| 1251 | |
|---|
| 1252 | /** Node that we're currently looking at. Undefined if isEnd |
|---|
| 1253 | is true. */ |
|---|
| 1254 | Node* node; |
|---|
| 1255 | |
|---|
| 1256 | /** Nodes waiting to be processed */ |
|---|
| 1257 | // We could use backpointers within the tree and careful |
|---|
| 1258 | // state management to avoid ever storing the stack-- but |
|---|
| 1259 | // it is much easier this way and only inefficient if the |
|---|
| 1260 | // caller uses post increment (which they shouldn't!). |
|---|
| 1261 | Array<Node*> stack; |
|---|
| 1262 | |
|---|
| 1263 | /** The next index of current->valueArray to return. |
|---|
| 1264 | Undefined when isEnd is true.*/ |
|---|
| 1265 | int nextValueArrayIndex; |
|---|
| 1266 | |
|---|
| 1267 | BoxIntersectionIterator() : isEnd(true) {} |
|---|
| 1268 | |
|---|
| 1269 | BoxIntersectionIterator(const AABox& b, const Node* root) : |
|---|
| 1270 | isEnd(root == NULL), box(b), |
|---|
| 1271 | node(const_cast<Node*>(root)), nextValueArrayIndex(-1) { |
|---|
| 1272 | |
|---|
| 1273 | // We intentionally start at the "-1" index of the current |
|---|
| 1274 | // node so we can use the preincrement operator to move |
|---|
| 1275 | // ourselves to element 0 instead of repeating all of the |
|---|
| 1276 | // code from the preincrement method. Note that this might |
|---|
| 1277 | // cause us to become the "end" instance. |
|---|
| 1278 | ++(*this); |
|---|
| 1279 | } |
|---|
| 1280 | |
|---|
| 1281 | public: |
|---|
| 1282 | |
|---|
| 1283 | inline bool operator!=(const BoxIntersectionIterator& other) const { |
|---|
| 1284 | return ! (*this == other); |
|---|
| 1285 | } |
|---|
| 1286 | |
|---|
| 1287 | bool operator==(const BoxIntersectionIterator& other) const { |
|---|
| 1288 | if (isEnd) { |
|---|
| 1289 | return other.isEnd; |
|---|
| 1290 | } else if (other.isEnd) { |
|---|
| 1291 | return false; |
|---|
| 1292 | } else { |
|---|
| 1293 | // Two non-end iterators; see if they match. This is kind of |
|---|
| 1294 | // silly; users shouldn't call == on iterators in general unless |
|---|
| 1295 | // one of them is the end iterator. |
|---|
| 1296 | if ((box != other.box) || (node != other.node) || |
|---|
| 1297 | (nextValueArrayIndex != other.nextValueArrayIndex) || |
|---|
| 1298 | (stack.length() != other.stack.length())) { |
|---|
| 1299 | return false; |
|---|
| 1300 | } |
|---|
| 1301 | |
|---|
| 1302 | // See if the stacks are the same |
|---|
| 1303 | for (int i = 0; i < stack.length(); ++i) { |
|---|
| 1304 | if (stack[i] != other.stack[i]) { |
|---|
| 1305 | return false; |
|---|
| 1306 | } |
|---|
| 1307 | } |
|---|
| 1308 | |
|---|
| 1309 | // We failed to find a difference; they must be the same |
|---|
| 1310 | return true; |
|---|
| 1311 | } |
|---|
| 1312 | } |
|---|
| 1313 | |
|---|
| 1314 | /** |
|---|
| 1315 | Pre increment. |
|---|
| 1316 | */ |
|---|
| 1317 | BoxIntersectionIterator& operator++() { |
|---|
| 1318 | ++nextValueArrayIndex; |
|---|
| 1319 | |
|---|
| 1320 | bool foundIntersection = false; |
|---|
| 1321 | while (! isEnd && ! foundIntersection) { |
|---|
| 1322 | |
|---|
| 1323 | // Search for the next node if we've exhausted this one |
|---|
| 1324 | while ((! isEnd) && (nextValueArrayIndex >= node->valueArray.length())) { |
|---|
| 1325 | // If we entered this loop, then the iterator has exhausted the elements at |
|---|
| 1326 | // node (possibly because it just switched to a child node with no members). |
|---|
| 1327 | // This loop continues until it finds a node with members or reaches |
|---|
| 1328 | // the end of the whole intersection search. |
|---|
| 1329 | |
|---|
| 1330 | // If the right child overlaps the box, push it onto the stack for |
|---|
| 1331 | // processing. |
|---|
| 1332 | if ((node->child[1] != NULL) && |
|---|
| 1333 | (box.high()[node->splitAxis] > node->splitLocation)) { |
|---|
| 1334 | stack.push(node->child[1]); |
|---|
| 1335 | } |
|---|
| 1336 | |
|---|
| 1337 | // If the left child overlaps the box, push it onto the stack for |
|---|
| 1338 | // processing. |
|---|
| 1339 | if ((node->child[0] != NULL) && |
|---|
| 1340 | (box.low()[node->splitAxis] < node->splitLocation)) { |
|---|
| 1341 | stack.push(node->child[0]); |
|---|
| 1342 | } |
|---|
| 1343 | |
|---|
| 1344 | if (stack.length() > 0) { |
|---|
| 1345 | // Go on to the next node (which may be either one of the ones we |
|---|
| 1346 | // just pushed, or one from farther back the tree). |
|---|
| 1347 | node = stack.pop(); |
|---|
| 1348 | nextValueArrayIndex = 0; |
|---|
| 1349 | } else { |
|---|
| 1350 | // That was the last node; we're done iterating |
|---|
| 1351 | isEnd = true; |
|---|
| 1352 | } |
|---|
| 1353 | } |
|---|
| 1354 | |
|---|
| 1355 | // Search for the next intersection at this node until we run out of children |
|---|
| 1356 | while (! isEnd && ! foundIntersection && (nextValueArrayIndex < node->valueArray.length())) { |
|---|
| 1357 | if (box.intersects(node->boundsArray[nextValueArrayIndex])) { |
|---|
| 1358 | foundIntersection = true; |
|---|
| 1359 | } else { |
|---|
| 1360 | ++nextValueArrayIndex; |
|---|
| 1361 | // If we exhaust this node, we'll loop around the master loop |
|---|
| 1362 | // to find a new node. |
|---|
| 1363 | } |
|---|
| 1364 | } |
|---|
| 1365 | } |
|---|
| 1366 | |
|---|
| 1367 | return *this; |
|---|
| 1368 | } |
|---|
| 1369 | |
|---|
| 1370 | private: |
|---|
| 1371 | /** |
|---|
| 1372 | Post increment (much slower than preincrement!). Intentionally overloaded to preclude accidentally slow code. |
|---|
| 1373 | */ |
|---|
| 1374 | BoxIntersectionIterator operator++(int); |
|---|
| 1375 | /*{ |
|---|
| 1376 | BoxIntersectionIterator old = *this; |
|---|
| 1377 | ++this; |
|---|
| 1378 | return old; |
|---|
| 1379 | }*/ |
|---|
| 1380 | |
|---|
| 1381 | public: |
|---|
| 1382 | |
|---|
| 1383 | /** Overloaded dereference operator so the iterator can masquerade as a pointer |
|---|
| 1384 | to a member */ |
|---|
| 1385 | const T& operator*() const { |
|---|
| 1386 | alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator"); |
|---|
| 1387 | return node->valueArray[nextValueArrayIndex]->value; |
|---|
| 1388 | } |
|---|
| 1389 | |
|---|
| 1390 | /** Overloaded dereference operator so the iterator can masquerade as a pointer |
|---|
| 1391 | to a member */ |
|---|
| 1392 | T const * operator->() const { |
|---|
| 1393 | alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator"); |
|---|
| 1394 | return &(stack.last()->valueArray[nextValueArrayIndex]->value); |
|---|
| 1395 | } |
|---|
| 1396 | |
|---|
| 1397 | /** Overloaded cast operator so the iterator can masquerade as a pointer |
|---|
| 1398 | to a member */ |
|---|
| 1399 | operator T*() const { |
|---|
| 1400 | alwaysAssertM(! isEnd, "Can't dereference the end element of an iterator"); |
|---|
| 1401 | return &(stack.last()->valueArray[nextValueArrayIndex]->value); |
|---|
| 1402 | } |
|---|
| 1403 | }; |
|---|
| 1404 | |
|---|
| 1405 | |
|---|
| 1406 | /** |
|---|
| 1407 | Iterates through the members that intersect the box |
|---|
| 1408 | */ |
|---|
| 1409 | BoxIntersectionIterator beginBoxIntersection(const AABox& box) const { |
|---|
| 1410 | return BoxIntersectionIterator(box, root); |
|---|
| 1411 | } |
|---|
| 1412 | |
|---|
| 1413 | BoxIntersectionIterator endBoxIntersection() const { |
|---|
| 1414 | // The "end" iterator instance |
|---|
| 1415 | return BoxIntersectionIterator(); |
|---|
| 1416 | } |
|---|
| 1417 | |
|---|
| 1418 | /** |
|---|
| 1419 | Appends all members whose bounds intersect the box. |
|---|
| 1420 | See also AABSPTree::beginBoxIntersection. |
|---|
| 1421 | */ |
|---|
| 1422 | void getIntersectingMembers(const AABox& box, Array<T>& members) const { |
|---|
| 1423 | if (root == NULL) { |
|---|
| 1424 | return; |
|---|
| 1425 | } |
|---|
| 1426 | root->getIntersectingMembers(box, Sphere(Vector3::zero(), 0), members, false); |
|---|
| 1427 | } |
|---|
| 1428 | |
|---|
| 1429 | |
|---|
| 1430 | /** |
|---|
| 1431 | Invoke a callback for every member along a ray until the closest intersection is found. |
|---|
| 1432 | |
|---|
| 1433 | @param callback either a function or an instance of a class with an overloaded operator() of the form: |
|---|
| 1434 | |
|---|
| 1435 | <code>void callback(const Ray& ray, const T& object, float& distance)</code>. If the ray hits the object |
|---|
| 1436 | before travelling distance <code>distance</code>, updates <code>distance</code> with the new distance to |
|---|
| 1437 | the intersection, otherwise leaves it unmodified. A common example is: |
|---|
| 1438 | |
|---|
| 1439 | <pre> |
|---|
| 1440 | class Entity { |
|---|
| 1441 | public: |
|---|
| 1442 | |
|---|
| 1443 | void intersect(const Ray& ray, float& maxDist, Vector3& outLocation, Vector3& outNormal) { |
|---|
| 1444 | float d = maxDist; |
|---|
| 1445 | |
|---|
| 1446 | // ... search for intersection distance d |
|---|
| 1447 | |
|---|
| 1448 | if ((d > 0) && (d < maxDist)) { |
|---|
| 1449 | // Intersection occured |
|---|
| 1450 | maxDist = d; |
|---|
| 1451 | outLocation = ...; |
|---|
| 1452 | outNormal = ...; |
|---|
| 1453 | } |
|---|
| 1454 | } |
|---|
| 1455 | }; |
|---|
| 1456 | |
|---|
| 1457 | // Finds the surface normal and location of the first intersection with the scene |
|---|
| 1458 | class Intersection { |
|---|
| 1459 | public: |
|---|
| 1460 | Entity* closestEntity; |
|---|
| 1461 | Vector3 hitLocation; |
|---|
| 1462 | Vector3 hitNormal; |
|---|
| 1463 | |
|---|
| 1464 | void operator()(const Ray& ray, const Entity* entity, float& distance) { |
|---|
| 1465 | entity->intersect(ray, distance, hitLocation, hitNormal); |
|---|
| 1466 | } |
|---|
| 1467 | }; |
|---|
| 1468 | |
|---|
| 1469 | AABSPTree<Entity*> scene; |
|---|
| 1470 | |
|---|
| 1471 | Intersection intersection; |
|---|
| 1472 | float distance = inf(); |
|---|
| 1473 | scene.intersectRay(camera.worldRay(x, y), intersection, distance); |
|---|
| 1474 | </pre> |
|---|
| 1475 | |
|---|
| 1476 | |
|---|
| 1477 | @param distance When the method is invoked, this is the maximum distance that the tree should search for an intersection. |
|---|
| 1478 | On return, this is set to the distance to the first intersection encountered. |
|---|
| 1479 | |
|---|
| 1480 | @param intersectCallbackIsFast If false, each object's bounds are tested before the intersectCallback is invoked. |
|---|
| 1481 | If the intersect callback runs at the same speed or faster than AABox-ray intersection, set this to true. |
|---|
| 1482 | */ |
|---|
| 1483 | template<typename RayCallback> |
|---|
| 1484 | void intersectRay( |
|---|
| 1485 | const Ray& ray, |
|---|
| 1486 | RayCallback& intersectCallback, |
|---|
| 1487 | float& distance, |
|---|
| 1488 | bool pStopAtFirstHit, |
|---|
| 1489 | bool intersectCallbackIsFast = false) const { |
|---|
| 1490 | |
|---|
| 1491 | root->intersectRay(ray, intersectCallback, distance, pStopAtFirstHit, intersectCallbackIsFast); |
|---|
| 1492 | |
|---|
| 1493 | } |
|---|
| 1494 | |
|---|
| 1495 | |
|---|
| 1496 | /** |
|---|
| 1497 | @param members The results are appended to this array. |
|---|
| 1498 | */ |
|---|
| 1499 | void getIntersectingMembers(const Sphere& sphere, Array<T>& members) const { |
|---|
| 1500 | if (root == NULL) { |
|---|
| 1501 | return; |
|---|
| 1502 | } |
|---|
| 1503 | |
|---|
| 1504 | AABox box; |
|---|
| 1505 | sphere.getBounds(box); |
|---|
| 1506 | root->getIntersectingMembers(box, sphere, members, true); |
|---|
| 1507 | |
|---|
| 1508 | } |
|---|
| 1509 | #if 0 |
|---|
| 1510 | /** |
|---|
| 1511 | Stores the locations of the splitting planes (the structure but not the content) |
|---|
| 1512 | so that the tree can be quickly rebuilt from a previous configuration without |
|---|
| 1513 | calling balance. |
|---|
| 1514 | */ |
|---|
| 1515 | void serializeStructure(BinaryOutput& bo) const { |
|---|
| 1516 | Node::serializeStructure(root, bo); |
|---|
| 1517 | } |
|---|
| 1518 | |
|---|
| 1519 | /** Clears the member table */ |
|---|
| 1520 | void deserializeStructure(BinaryInput& bi) { |
|---|
| 1521 | clear(); |
|---|
| 1522 | root = Node::deserializeStructure(bi); |
|---|
| 1523 | } |
|---|
| 1524 | #endif |
|---|
| 1525 | /** |
|---|
| 1526 | Returns an array of all members of the set. See also AABSPTree::begin. |
|---|
| 1527 | */ |
|---|
| 1528 | void getMembers(Array<T>& members) const { |
|---|
| 1529 | Array<Member> temp; |
|---|
| 1530 | memberTable.getKeys(temp); |
|---|
| 1531 | for (int i = 0; i < temp.size(); ++i) { |
|---|
| 1532 | members.append(temp[i].handle->value); |
|---|
| 1533 | } |
|---|
| 1534 | } |
|---|
| 1535 | |
|---|
| 1536 | |
|---|
| 1537 | /** |
|---|
| 1538 | C++ STL style iterator variable. See begin(). |
|---|
| 1539 | Overloads the -> (dereference) operator, so this acts like a pointer |
|---|
| 1540 | to the current member. |
|---|
| 1541 | */ |
|---|
| 1542 | class Iterator { |
|---|
| 1543 | private: |
|---|
| 1544 | friend class AABSPTree<T>; |
|---|
| 1545 | |
|---|
| 1546 | // Note: this is a Table iterator, we are currently defining |
|---|
| 1547 | // Set iterator |
|---|
| 1548 | typename Table<Member, Node*>::Iterator it; |
|---|
| 1549 | |
|---|
| 1550 | Iterator(const typename Table<Member, Node*>::Iterator& it) : it(it) {} |
|---|
| 1551 | |
|---|
| 1552 | public: |
|---|
| 1553 | |
|---|
| 1554 | inline bool operator!=(const Iterator& other) const { |
|---|
| 1555 | return !(*this == other); |
|---|
| 1556 | } |
|---|
| 1557 | |
|---|
| 1558 | bool operator==(const Iterator& other) const { |
|---|
| 1559 | return it == other.it; |
|---|
| 1560 | } |
|---|
| 1561 | |
|---|
| 1562 | /** |
|---|
| 1563 | Pre increment. |
|---|
| 1564 | */ |
|---|
| 1565 | Iterator& operator++() { |
|---|
| 1566 | ++it; |
|---|
| 1567 | return *this; |
|---|
| 1568 | } |
|---|
| 1569 | |
|---|
| 1570 | private: |
|---|
| 1571 | /** |
|---|
| 1572 | Post increment (slower than preincrement). Intentionally unimplemented to prevent slow code. |
|---|
| 1573 | */ |
|---|
| 1574 | Iterator operator++(int);/* { |
|---|
| 1575 | Iterator old = *this; |
|---|
| 1576 | ++(*this); |
|---|
| 1577 | return old; |
|---|
| 1578 | }*/ |
|---|
| 1579 | public: |
|---|
| 1580 | |
|---|
| 1581 | const T& operator*() const { |
|---|
| 1582 | return it->key.handle->value; |
|---|
| 1583 | } |
|---|
| 1584 | |
|---|
| 1585 | T* operator->() const { |
|---|
| 1586 | return &(it->key.handle->value); |
|---|
| 1587 | } |
|---|
| 1588 | |
|---|
| 1589 | operator T*() const { |
|---|
| 1590 | return &(it->key.handle->value); |
|---|
| 1591 | } |
|---|
| 1592 | }; |
|---|
| 1593 | |
|---|
| 1594 | |
|---|
| 1595 | /** |
|---|
| 1596 | C++ STL style iterator method. Returns the first member. |
|---|
| 1597 | Use preincrement (++entry) to get to the next element (iteration |
|---|
| 1598 | order is arbitrary). |
|---|
| 1599 | Do not modify the set while iterating. |
|---|
| 1600 | */ |
|---|
| 1601 | Iterator begin() const { |
|---|
| 1602 | return Iterator(memberTable.begin()); |
|---|
| 1603 | } |
|---|
| 1604 | |
|---|
| 1605 | |
|---|
| 1606 | /** |
|---|
| 1607 | C++ STL style iterator method. Returns one after the last iterator |
|---|
| 1608 | element. |
|---|
| 1609 | */ |
|---|
| 1610 | Iterator end() const { |
|---|
| 1611 | return Iterator(memberTable.end()); |
|---|
| 1612 | } |
|---|
| 1613 | }; |
|---|
| 1614 | |
|---|
| 1615 | } |
|---|
| 1616 | |
|---|
| 1617 | #endif |
|---|
| 1618 | |
|---|
| 1619 | |
|---|
| 1620 | |
|---|