1 | /** |
---|
2 | @file Matrix3.h |
---|
3 | |
---|
4 | 3x3 matrix class |
---|
5 | |
---|
6 | @maintainer Morgan McGuire, matrix@graphics3d.com |
---|
7 | |
---|
8 | @cite Portions based on Dave Eberly's Magic Software Library at <A HREF="http://www.magic-software.com">http://www.magic-software.com</A> |
---|
9 | |
---|
10 | @created 2001-06-02 |
---|
11 | @edited 2006-04-05 |
---|
12 | */ |
---|
13 | |
---|
14 | #ifndef G3D_MATRIX3_H |
---|
15 | #define G3D_MATRIX3_H |
---|
16 | |
---|
17 | #include "G3D/platform.h" |
---|
18 | #include "G3D/System.h" |
---|
19 | #include "G3D/Vector3.h" |
---|
20 | #include "G3D/Vector4.h" |
---|
21 | |
---|
22 | namespace G3D { |
---|
23 | |
---|
24 | /** |
---|
25 | 3x3 matrix. Do not subclass. |
---|
26 | */ |
---|
27 | class Matrix3 { |
---|
28 | private: |
---|
29 | |
---|
30 | float elt[3][3]; |
---|
31 | |
---|
32 | // Hidden operators |
---|
33 | bool operator<(const Matrix3&) const; |
---|
34 | bool operator>(const Matrix3&) const; |
---|
35 | bool operator<=(const Matrix3&) const; |
---|
36 | bool operator>=(const Matrix3&) const; |
---|
37 | |
---|
38 | public: |
---|
39 | |
---|
40 | /** Initial values are undefined for performance. See also |
---|
41 | Matrix3::zero(), Matrix3::identity(), Matrix3::fromAxisAngle, etc.*/ |
---|
42 | inline Matrix3() {} |
---|
43 | |
---|
44 | Matrix3 (const float aafEntry[3][3]); |
---|
45 | Matrix3 (const Matrix3& rkMatrix); |
---|
46 | Matrix3 (float fEntry00, float fEntry01, float fEntry02, |
---|
47 | float fEntry10, float fEntry11, float fEntry12, |
---|
48 | float fEntry20, float fEntry21, float fEntry22); |
---|
49 | |
---|
50 | bool fuzzyEq(const Matrix3& b) const; |
---|
51 | |
---|
52 | /** Constructs a matrix from a quaternion. |
---|
53 | @cite Graphics Gems II, p. 351--354 |
---|
54 | @cite Implementation from Watt and Watt, pg 362*/ |
---|
55 | Matrix3(const class Quat& q); |
---|
56 | |
---|
57 | |
---|
58 | /** |
---|
59 | Sets all elements. |
---|
60 | */ |
---|
61 | void set(float fEntry00, float fEntry01, float fEntry02, |
---|
62 | float fEntry10, float fEntry11, float fEntry12, |
---|
63 | float fEntry20, float fEntry21, float fEntry22); |
---|
64 | |
---|
65 | /** |
---|
66 | * member access, allows use of construct mat[r][c] |
---|
67 | */ |
---|
68 | inline float* operator[] (int iRow) { |
---|
69 | debugAssert(iRow >= 0); |
---|
70 | debugAssert(iRow < 3); |
---|
71 | return (float*)&elt[iRow][0]; |
---|
72 | } |
---|
73 | |
---|
74 | inline const float* operator[] (int iRow) const { |
---|
75 | debugAssert(iRow >= 0); |
---|
76 | debugAssert(iRow < 3); |
---|
77 | return (const float*)&elt[iRow][0]; |
---|
78 | } |
---|
79 | |
---|
80 | inline operator float* () { |
---|
81 | return (float*)&elt[0][0]; |
---|
82 | } |
---|
83 | |
---|
84 | inline operator const float* () const{ |
---|
85 | return (const float*)&elt[0][0]; |
---|
86 | } |
---|
87 | |
---|
88 | Vector3 getColumn (int iCol) const; |
---|
89 | Vector3 getRow (int iRow) const; |
---|
90 | void setColumn(int iCol, const Vector3 &vector); |
---|
91 | void setRow(int iRow, const Vector3 &vector); |
---|
92 | |
---|
93 | // assignment and comparison |
---|
94 | inline Matrix3& operator= (const Matrix3& rkMatrix) { |
---|
95 | System::memcpy(elt, rkMatrix.elt, 9 * sizeof(float)); |
---|
96 | return *this; |
---|
97 | } |
---|
98 | |
---|
99 | bool operator== (const Matrix3& rkMatrix) const; |
---|
100 | bool operator!= (const Matrix3& rkMatrix) const; |
---|
101 | |
---|
102 | // arithmetic operations |
---|
103 | Matrix3 operator+ (const Matrix3& rkMatrix) const; |
---|
104 | Matrix3 operator- (const Matrix3& rkMatrix) const; |
---|
105 | /** Matrix-matrix multiply */ |
---|
106 | Matrix3 operator* (const Matrix3& rkMatrix) const; |
---|
107 | Matrix3 operator- () const; |
---|
108 | |
---|
109 | Matrix3& operator+= (const Matrix3& rkMatrix); |
---|
110 | Matrix3& operator-= (const Matrix3& rkMatrix); |
---|
111 | Matrix3& operator*= (const Matrix3& rkMatrix); |
---|
112 | |
---|
113 | /** |
---|
114 | * matrix * vector [3x3 * 3x1 = 3x1] |
---|
115 | */ |
---|
116 | inline Vector3 operator* (const Vector3& v) const { |
---|
117 | Vector3 kProd; |
---|
118 | |
---|
119 | for (int r = 0; r < 3; ++r) { |
---|
120 | kProd[r] = |
---|
121 | elt[r][0] * v[0] + |
---|
122 | elt[r][1] * v[1] + |
---|
123 | elt[r][2] * v[2]; |
---|
124 | } |
---|
125 | |
---|
126 | return kProd; |
---|
127 | } |
---|
128 | |
---|
129 | |
---|
130 | /** |
---|
131 | * vector * matrix [1x3 * 3x3 = 1x3] |
---|
132 | */ |
---|
133 | friend Vector3 operator* (const Vector3& rkVector, |
---|
134 | const Matrix3& rkMatrix); |
---|
135 | |
---|
136 | /** |
---|
137 | * matrix * scalar |
---|
138 | */ |
---|
139 | Matrix3 operator* (float fScalar) const; |
---|
140 | |
---|
141 | /** scalar * matrix */ |
---|
142 | friend Matrix3 operator* (double fScalar, const Matrix3& rkMatrix); |
---|
143 | friend Matrix3 operator* (float fScalar, const Matrix3& rkMatrix); |
---|
144 | friend Matrix3 operator* (int fScalar, const Matrix3& rkMatrix); |
---|
145 | |
---|
146 | private: |
---|
147 | /** Multiplication where out != A and out != B */ |
---|
148 | static void _mul(const Matrix3& A, const Matrix3& B, Matrix3& out); |
---|
149 | public: |
---|
150 | |
---|
151 | /** Optimized implementation of out = A * B. It is safe (but slow) to call |
---|
152 | with A, B, and out possibly pointer equal to one another.*/ |
---|
153 | // This is a static method so that it is not ambiguous whether "this" |
---|
154 | // is an input or output argument. |
---|
155 | inline static void mul(const Matrix3& A, const Matrix3& B, Matrix3& out) { |
---|
156 | if ((&out == &A) || (&out == &B)) { |
---|
157 | // We need a temporary anyway, so revert to the stack method. |
---|
158 | out = A * B; |
---|
159 | } else { |
---|
160 | // Optimized in-place multiplication. |
---|
161 | _mul(A, B, out); |
---|
162 | } |
---|
163 | } |
---|
164 | |
---|
165 | private: |
---|
166 | static void _transpose(const Matrix3& A, Matrix3& out); |
---|
167 | public: |
---|
168 | |
---|
169 | /** Optimized implementation of out = A.transpose(). It is safe (but slow) to call |
---|
170 | with A and out possibly pointer equal to one another. |
---|
171 | |
---|
172 | Note that <CODE>A.transpose() * v</CODE> can be computed |
---|
173 | more efficiently as <CODE>v * A</CODE>. |
---|
174 | */ |
---|
175 | inline static void transpose(const Matrix3& A, Matrix3& out) { |
---|
176 | if (&A == &out) { |
---|
177 | out = A.transpose(); |
---|
178 | } else { |
---|
179 | _transpose(A, out); |
---|
180 | } |
---|
181 | } |
---|
182 | |
---|
183 | /** Returns true if the rows and column L2 norms are 1.0 and the rows are orthogonal. */ |
---|
184 | bool isOrthonormal() const; |
---|
185 | |
---|
186 | Matrix3 transpose () const; |
---|
187 | bool inverse (Matrix3& rkInverse, float fTolerance = 1e-06) const; |
---|
188 | Matrix3 inverse (float fTolerance = 1e-06) const; |
---|
189 | float determinant () const; |
---|
190 | |
---|
191 | /** singular value decomposition */ |
---|
192 | void singularValueDecomposition (Matrix3& rkL, Vector3& rkS, |
---|
193 | Matrix3& rkR) const; |
---|
194 | /** singular value decomposition */ |
---|
195 | void singularValueComposition (const Matrix3& rkL, |
---|
196 | const Vector3& rkS, const Matrix3& rkR); |
---|
197 | |
---|
198 | /** Gram-Schmidt orthonormalization (applied to columns of rotation matrix) */ |
---|
199 | void orthonormalize(); |
---|
200 | |
---|
201 | /** orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12) */ |
---|
202 | void qDUDecomposition (Matrix3& rkQ, Vector3& rkD, |
---|
203 | Vector3& rkU) const; |
---|
204 | |
---|
205 | float spectralNorm () const; |
---|
206 | |
---|
207 | /** matrix must be orthonormal */ |
---|
208 | void toAxisAngle(Vector3& rkAxis, float& rfRadians) const; |
---|
209 | |
---|
210 | static Matrix3 fromAxisAngle(const Vector3& rkAxis, float fRadians); |
---|
211 | |
---|
212 | /** |
---|
213 | * The matrix must be orthonormal. The decomposition is yaw*pitch*roll |
---|
214 | * where yaw is rotation about the Up vector, pitch is rotation about the |
---|
215 | * right axis, and roll is rotation about the Direction axis. |
---|
216 | */ |
---|
217 | bool toEulerAnglesXYZ (float& rfYAngle, float& rfPAngle, |
---|
218 | float& rfRAngle) const; |
---|
219 | bool toEulerAnglesXZY (float& rfYAngle, float& rfPAngle, |
---|
220 | float& rfRAngle) const; |
---|
221 | bool toEulerAnglesYXZ (float& rfYAngle, float& rfPAngle, |
---|
222 | float& rfRAngle) const; |
---|
223 | bool toEulerAnglesYZX (float& rfYAngle, float& rfPAngle, |
---|
224 | float& rfRAngle) const; |
---|
225 | bool toEulerAnglesZXY (float& rfYAngle, float& rfPAngle, |
---|
226 | float& rfRAngle) const; |
---|
227 | bool toEulerAnglesZYX (float& rfYAngle, float& rfPAngle, |
---|
228 | float& rfRAngle) const; |
---|
229 | static Matrix3 fromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle); |
---|
230 | static Matrix3 fromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle); |
---|
231 | static Matrix3 fromEulerAnglesYXZ (float fYAngle, float fPAngle, float fRAngle); |
---|
232 | static Matrix3 fromEulerAnglesYZX (float fYAngle, float fPAngle, float fRAngle); |
---|
233 | static Matrix3 fromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle); |
---|
234 | static Matrix3 fromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle); |
---|
235 | |
---|
236 | /** eigensolver, matrix must be symmetric */ |
---|
237 | void eigenSolveSymmetric (float afEigenvalue[3], |
---|
238 | Vector3 akEigenvector[3]) const; |
---|
239 | |
---|
240 | static void tensorProduct (const Vector3& rkU, const Vector3& rkV, |
---|
241 | Matrix3& rkProduct); |
---|
242 | std::string toString() const; |
---|
243 | |
---|
244 | static const float EPSILON; |
---|
245 | |
---|
246 | // Special values. |
---|
247 | // The unguaranteed order of initialization of static variables across |
---|
248 | // translation units can be a source of annoying bugs, so now the static |
---|
249 | // special values (like Vector3::ZERO, Color3::WHITE, ...) are wrapped |
---|
250 | // inside static functions that return references to them. |
---|
251 | // These functions are intentionally not inlined, because: |
---|
252 | // "You might be tempted to write [...] them as inline functions |
---|
253 | // inside their respective header files, but this is something you |
---|
254 | // must definitely not do. An inline function can be duplicated |
---|
255 | // in every file in which it appears and this duplication |
---|
256 | // includes the static object definition. Because inline functions |
---|
257 | // automatically default to internal linkage, this would result in |
---|
258 | // having multiple static objects across the various translation |
---|
259 | // units, which would certainly cause problems. So you must |
---|
260 | // ensure that there is only one definition of each wrapping |
---|
261 | // function, and this means not making the wrapping functions inline", |
---|
262 | // according to Chapter 10 of "Thinking in C++, 2nd ed. Volume 1" by Bruce Eckel, |
---|
263 | // http://www.mindview.net/ |
---|
264 | static const Matrix3& zero(); |
---|
265 | static const Matrix3& identity(); |
---|
266 | |
---|
267 | // Deprecated. |
---|
268 | /** @deprecated Use Matrix3::zero() */ |
---|
269 | static const Matrix3 ZERO; |
---|
270 | /** @deprecated Use Matrix3::identity() */ |
---|
271 | static const Matrix3 IDENTITY; |
---|
272 | |
---|
273 | protected: |
---|
274 | // support for eigensolver |
---|
275 | void tridiagonal (float afDiag[3], float afSubDiag[3]); |
---|
276 | bool qLAlgorithm (float afDiag[3], float afSubDiag[3]); |
---|
277 | |
---|
278 | // support for singular value decomposition |
---|
279 | static const float ms_fSvdEpsilon; |
---|
280 | static const int ms_iSvdMaxIterations; |
---|
281 | static void bidiagonalize (Matrix3& kA, Matrix3& kL, |
---|
282 | Matrix3& kR); |
---|
283 | static void golubKahanStep (Matrix3& kA, Matrix3& kL, |
---|
284 | Matrix3& kR); |
---|
285 | |
---|
286 | // support for spectral norm |
---|
287 | static float maxCubicRoot (float afCoeff[3]); |
---|
288 | |
---|
289 | }; |
---|
290 | |
---|
291 | |
---|
292 | //---------------------------------------------------------------------------- |
---|
293 | /** <code>v * M == M.transpose() * v</code> */ |
---|
294 | inline Vector3 operator* (const Vector3& rkPoint, const Matrix3& rkMatrix) { |
---|
295 | Vector3 kProd; |
---|
296 | |
---|
297 | for (int r = 0; r < 3; ++r) { |
---|
298 | kProd[r] = |
---|
299 | rkPoint[0] * rkMatrix.elt[0][r] + |
---|
300 | rkPoint[1] * rkMatrix.elt[1][r] + |
---|
301 | rkPoint[2] * rkMatrix.elt[2][r]; |
---|
302 | } |
---|
303 | |
---|
304 | return kProd; |
---|
305 | } |
---|
306 | |
---|
307 | |
---|
308 | } // namespace |
---|
309 | |
---|
310 | #endif |
---|
311 | |
---|