| 1 | /** |
|---|
| 2 | @file Quat.h |
|---|
| 3 | |
|---|
| 4 | Quaternion |
|---|
| 5 | |
|---|
| 6 | @maintainer Morgan McGuire, matrix@graphics3d.com |
|---|
| 7 | |
|---|
| 8 | @created 2002-01-23 |
|---|
| 9 | @edited 2006-05-10 |
|---|
| 10 | */ |
|---|
| 11 | |
|---|
| 12 | #ifndef G3D_QUAT_H |
|---|
| 13 | #define G3D_QUAT_H |
|---|
| 14 | |
|---|
| 15 | #include "G3D/platform.h" |
|---|
| 16 | #include "G3D/g3dmath.h" |
|---|
| 17 | #include "G3D/Vector3.h" |
|---|
| 18 | #include "G3D/Matrix3.h" |
|---|
| 19 | #include <string> |
|---|
| 20 | |
|---|
| 21 | namespace G3D { |
|---|
| 22 | |
|---|
| 23 | /** |
|---|
| 24 | Unit quaternions are used in computer graphics to represent |
|---|
| 25 | rotation about an axis. Any 3x3 rotation matrix can |
|---|
| 26 | be stored as a quaternion. |
|---|
| 27 | |
|---|
| 28 | A quaternion represents the sum of a real scalar and |
|---|
| 29 | an imaginary vector: ix + jy + kz + w. A unit quaternion |
|---|
| 30 | representing a rotation by A about axis v has the form |
|---|
| 31 | [sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse() |
|---|
| 32 | is a rotation by -A about v. -q is the same rotation as q |
|---|
| 33 | (negate both the axis and angle). |
|---|
| 34 | |
|---|
| 35 | A non-unit quaterion q represents the same rotation as |
|---|
| 36 | q.unitize() (Dam98 pg 28). |
|---|
| 37 | |
|---|
| 38 | Although quaternion-vector operations (eg. Quat + Vector3) are |
|---|
| 39 | well defined, they are not supported by this class because |
|---|
| 40 | they typically are bugs when they appear in code. |
|---|
| 41 | |
|---|
| 42 | Do not subclass. |
|---|
| 43 | |
|---|
| 44 | <B>BETA API -- subject to change</B> |
|---|
| 45 | @cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998. |
|---|
| 46 | */ |
|---|
| 47 | class Quat { |
|---|
| 48 | private: |
|---|
| 49 | // Hidden operators |
|---|
| 50 | bool operator<(const Quat&) const; |
|---|
| 51 | bool operator>(const Quat&) const; |
|---|
| 52 | bool operator<=(const Quat&) const; |
|---|
| 53 | bool operator>=(const Quat&) const; |
|---|
| 54 | |
|---|
| 55 | public: |
|---|
| 56 | |
|---|
| 57 | /** |
|---|
| 58 | q = [sin(angle / 2) * axis, cos(angle / 2)] |
|---|
| 59 | |
|---|
| 60 | In Watt & Watt's notation, s = w, v = (x, y, z) |
|---|
| 61 | In the Real-Time Rendering notation, u = (x, y, z), w = w |
|---|
| 62 | */ |
|---|
| 63 | float x, y, z, w; |
|---|
| 64 | |
|---|
| 65 | /** |
|---|
| 66 | Initializes to a zero degree rotation. |
|---|
| 67 | */ |
|---|
| 68 | inline Quat() : x(0), y(0), z(0), w(1) {} |
|---|
| 69 | |
|---|
| 70 | Quat( |
|---|
| 71 | const Matrix3& rot); |
|---|
| 72 | |
|---|
| 73 | inline Quat(float _x, float _y, float _z, float _w) : |
|---|
| 74 | x(_x), y(_y), z(_z), w(_w) {} |
|---|
| 75 | |
|---|
| 76 | /** Defaults to a pure vector quaternion */ |
|---|
| 77 | inline Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) { |
|---|
| 78 | } |
|---|
| 79 | |
|---|
| 80 | /** |
|---|
| 81 | The real part of the quaternion. |
|---|
| 82 | */ |
|---|
| 83 | inline const float& real() const { |
|---|
| 84 | return w; |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | inline float& real() { |
|---|
| 88 | return w; |
|---|
| 89 | } |
|---|
| 90 | |
|---|
| 91 | /** Note: two quats can represent the Quat::sameRotation and not be equal. */ |
|---|
| 92 | bool fuzzyEq(const Quat& q) { |
|---|
| 93 | return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w); |
|---|
| 94 | } |
|---|
| 95 | |
|---|
| 96 | /** True if these quaternions represent the same rotation (note that every rotation is |
|---|
| 97 | represented by two values; q and -q). |
|---|
| 98 | */ |
|---|
| 99 | bool sameRotation(const Quat& q) { |
|---|
| 100 | return fuzzyEq(q) || fuzzyEq(-q); |
|---|
| 101 | } |
|---|
| 102 | |
|---|
| 103 | inline Quat operator-() const { |
|---|
| 104 | return Quat(-x, -y, -z, -w); |
|---|
| 105 | } |
|---|
| 106 | |
|---|
| 107 | /** |
|---|
| 108 | Returns the imaginary part (x, y, z) |
|---|
| 109 | */ |
|---|
| 110 | inline const Vector3& imag() const { |
|---|
| 111 | return *(reinterpret_cast<const Vector3*>(this)); |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | inline Vector3& imag() { |
|---|
| 115 | return *(reinterpret_cast<Vector3*>(this)); |
|---|
| 116 | } |
|---|
| 117 | |
|---|
| 118 | /** q = [sin(angle/2)*axis, cos(angle/2)] */ |
|---|
| 119 | static Quat fromAxisAngleRotation( |
|---|
| 120 | const Vector3& axis, |
|---|
| 121 | float angle); |
|---|
| 122 | |
|---|
| 123 | /** Returns the axis and angle of rotation represented |
|---|
| 124 | by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */ |
|---|
| 125 | void toAxisAngleRotation( |
|---|
| 126 | Vector3& axis, |
|---|
| 127 | double& angle) const; |
|---|
| 128 | |
|---|
| 129 | void toAxisAngleRotation( |
|---|
| 130 | Vector3& axis, |
|---|
| 131 | float& angle) const { |
|---|
| 132 | double d; |
|---|
| 133 | toAxisAngleRotation(axis, d); |
|---|
| 134 | angle = (float)d; |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | Matrix3 toRotationMatrix() const; |
|---|
| 138 | |
|---|
| 139 | void toRotationMatrix( |
|---|
| 140 | Matrix3& rot) const; |
|---|
| 141 | |
|---|
| 142 | /** |
|---|
| 143 | Spherical linear interpolation: linear interpolation along the |
|---|
| 144 | shortest (3D) great-circle route between two quaternions. |
|---|
| 145 | |
|---|
| 146 | Note: Correct rotations are expected between 0 and PI in the right order. |
|---|
| 147 | |
|---|
| 148 | @cite Based on Game Physics -- David Eberly pg 538-540 |
|---|
| 149 | @param threshold Critical angle between between rotations at which |
|---|
| 150 | the algorithm switches to normalized lerp, which is more |
|---|
| 151 | numerically stable in those situations. 0.0 will always slerp. |
|---|
| 152 | */ |
|---|
| 153 | Quat slerp( |
|---|
| 154 | const Quat& other, |
|---|
| 155 | float alpha, |
|---|
| 156 | float threshold = 0.05f) const; |
|---|
| 157 | |
|---|
| 158 | /** Normalized linear interpolation of quaternion components. */ |
|---|
| 159 | Quat nlerp(const Quat& other, float alpha) const; |
|---|
| 160 | |
|---|
| 161 | /** |
|---|
| 162 | Negates the imaginary part. |
|---|
| 163 | */ |
|---|
| 164 | inline Quat conj() const { |
|---|
| 165 | return Quat(-x, -y, -z, w); |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | inline float sum() const { |
|---|
| 169 | return x + y + z + w; |
|---|
| 170 | } |
|---|
| 171 | |
|---|
| 172 | inline float average() const { |
|---|
| 173 | return sum() / 4.0f; |
|---|
| 174 | } |
|---|
| 175 | |
|---|
| 176 | inline Quat operator*(float s) const { |
|---|
| 177 | return Quat(x * s, y * s, z * s, w * s); |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | /** @cite Based on Watt & Watt, page 360 */ |
|---|
| 181 | friend Quat operator* (float s, const Quat& q); |
|---|
| 182 | |
|---|
| 183 | inline Quat operator/(float s) const { |
|---|
| 184 | return Quat(x / s, y / s, z / s, w / s); |
|---|
| 185 | } |
|---|
| 186 | |
|---|
| 187 | inline float dot(const Quat& other) const { |
|---|
| 188 | return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w); |
|---|
| 189 | } |
|---|
| 190 | |
|---|
| 191 | /** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion. |
|---|
| 192 | @cite Dam99 page 13 */ |
|---|
| 193 | inline Quat inverse() const { |
|---|
| 194 | return conj() / dot(*this); |
|---|
| 195 | } |
|---|
| 196 | |
|---|
| 197 | Quat operator-(const Quat& other) const; |
|---|
| 198 | |
|---|
| 199 | Quat operator+(const Quat& other) const; |
|---|
| 200 | |
|---|
| 201 | /** |
|---|
| 202 | Quaternion multiplication (composition of rotations). |
|---|
| 203 | Note that this does not commute. |
|---|
| 204 | */ |
|---|
| 205 | Quat operator*(const Quat& other) const; |
|---|
| 206 | |
|---|
| 207 | /* (*this) * other.inverse() */ |
|---|
| 208 | Quat operator/(const Quat& other) const { |
|---|
| 209 | return (*this) * other.inverse(); |
|---|
| 210 | } |
|---|
| 211 | |
|---|
| 212 | |
|---|
| 213 | /** Is the magnitude nearly 1.0? */ |
|---|
| 214 | inline bool isUnit(float tolerance = 1e-5) const { |
|---|
| 215 | return abs(dot(*this) - 1.0f) < tolerance; |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | |
|---|
| 219 | inline float magnitude() const { |
|---|
| 220 | return sqrtf(dot(*this)); |
|---|
| 221 | } |
|---|
| 222 | |
|---|
| 223 | inline Quat log() const { |
|---|
| 224 | if ((x == 0) && (y == 0) && (z == 0)) { |
|---|
| 225 | if (w > 0) { |
|---|
| 226 | return Quat(0, 0, 0, ::logf(w)); |
|---|
| 227 | } else if (w < 0) { |
|---|
| 228 | // Log of a negative number. Multivalued, any number of the form |
|---|
| 229 | // (PI * v, ln(-q.w)) |
|---|
| 230 | return Quat((float)G3D_PI, 0, 0, ::logf(-w)); |
|---|
| 231 | } else { |
|---|
| 232 | // log of zero! |
|---|
| 233 | return Quat((float)nan(), (float)nan(), (float)nan(), (float)nan()); |
|---|
| 234 | } |
|---|
| 235 | } else { |
|---|
| 236 | // Partly imaginary. |
|---|
| 237 | float imagLen = sqrtf(x * x + y * y + z * z); |
|---|
| 238 | float len = sqrtf(imagLen * imagLen + w * w); |
|---|
| 239 | float theta = atan2f(imagLen, (float)w); |
|---|
| 240 | float t = theta / imagLen; |
|---|
| 241 | return Quat(t * x, t * y, t * z, ::logf(len)); |
|---|
| 242 | } |
|---|
| 243 | } |
|---|
| 244 | /** log q = [Av, 0] where q = [sin(A) * v, cos(A)]. |
|---|
| 245 | Only for unit quaternions |
|---|
| 246 | debugAssertM(isUnit(), "Log only defined for unit quaternions"); |
|---|
| 247 | // Solve for A in q = [sin(A)*v, cos(A)] |
|---|
| 248 | Vector3 u(x, y, z); |
|---|
| 249 | double len = u.magnitude(); |
|---|
| 250 | |
|---|
| 251 | if (len == 0.0) { |
|---|
| 252 | return |
|---|
| 253 | } |
|---|
| 254 | double A = atan2((double)w, len); |
|---|
| 255 | Vector3 v = u / len; |
|---|
| 256 | |
|---|
| 257 | return Quat(v * A, 0); |
|---|
| 258 | } |
|---|
| 259 | */ |
|---|
| 260 | |
|---|
| 261 | /** exp q = [sin(A) * v, cos(A)] where q = [Av, 0]. |
|---|
| 262 | Only defined for pure-vector quaternions */ |
|---|
| 263 | inline Quat exp() const { |
|---|
| 264 | debugAssertM(w == 0, "exp only defined for vector quaternions"); |
|---|
| 265 | Vector3 u(x, y, z); |
|---|
| 266 | float A = u.magnitude(); |
|---|
| 267 | Vector3 v = u / A; |
|---|
| 268 | return Quat(sinf(A) * v, cosf(A)); |
|---|
| 269 | } |
|---|
| 270 | |
|---|
| 271 | |
|---|
| 272 | /** |
|---|
| 273 | Raise this quaternion to a power. For a rotation, this is |
|---|
| 274 | the effect of rotating x times as much as the original |
|---|
| 275 | quaterion. |
|---|
| 276 | |
|---|
| 277 | Note that q.pow(a).pow(b) == q.pow(a + b) |
|---|
| 278 | @cite Dam98 pg 21 |
|---|
| 279 | */ |
|---|
| 280 | inline Quat pow(float x) const { |
|---|
| 281 | return (log() * x).exp(); |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | |
|---|
| 285 | /** |
|---|
| 286 | @deprecated |
|---|
| 287 | Use toUnit() |
|---|
| 288 | */ |
|---|
| 289 | inline Quat unitize() const { |
|---|
| 290 | float mag2 = dot(*this); |
|---|
| 291 | if (G3D::fuzzyEq(mag2, 1.0f)) { |
|---|
| 292 | return *this; |
|---|
| 293 | } else { |
|---|
| 294 | return *this / sqrtf(mag2); |
|---|
| 295 | } |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | /** |
|---|
| 299 | Returns a unit quaterion obtained by dividing through by |
|---|
| 300 | the magnitude. |
|---|
| 301 | */ |
|---|
| 302 | inline Quat toUnit() const { |
|---|
| 303 | return unitize(); |
|---|
| 304 | } |
|---|
| 305 | |
|---|
| 306 | /** |
|---|
| 307 | The linear algebra 2-norm, sqrt(q dot q). This matches |
|---|
| 308 | the value used in Dam's 1998 tech report but differs from the |
|---|
| 309 | n(q) value used in Eberly's 1999 paper, which is the square of the |
|---|
| 310 | norm. |
|---|
| 311 | */ |
|---|
| 312 | inline float norm() const { |
|---|
| 313 | return magnitude(); |
|---|
| 314 | } |
|---|
| 315 | |
|---|
| 316 | // access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w |
|---|
| 317 | // |
|---|
| 318 | // WARNING. These member functions rely on |
|---|
| 319 | // (1) Quat not having virtual functions |
|---|
| 320 | // (2) the data packed in a 4*sizeof(float) memory block |
|---|
| 321 | const float& operator[] (int i) const; |
|---|
| 322 | float& operator[] (int i); |
|---|
| 323 | |
|---|
| 324 | /** Generate uniform random unit quaternion (i.e. random "direction") |
|---|
| 325 | @cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III. |
|---|
| 326 | */ |
|---|
| 327 | static Quat unitRandom(); |
|---|
| 328 | |
|---|
| 329 | // 2-char swizzles |
|---|
| 330 | |
|---|
| 331 | Vector2 xx() const; |
|---|
| 332 | Vector2 yx() const; |
|---|
| 333 | Vector2 zx() const; |
|---|
| 334 | Vector2 wx() const; |
|---|
| 335 | Vector2 xy() const; |
|---|
| 336 | Vector2 yy() const; |
|---|
| 337 | Vector2 zy() const; |
|---|
| 338 | Vector2 wy() const; |
|---|
| 339 | Vector2 xz() const; |
|---|
| 340 | Vector2 yz() const; |
|---|
| 341 | Vector2 zz() const; |
|---|
| 342 | Vector2 wz() const; |
|---|
| 343 | Vector2 xw() const; |
|---|
| 344 | Vector2 yw() const; |
|---|
| 345 | Vector2 zw() const; |
|---|
| 346 | Vector2 ww() const; |
|---|
| 347 | |
|---|
| 348 | // 3-char swizzles |
|---|
| 349 | |
|---|
| 350 | Vector3 xxx() const; |
|---|
| 351 | Vector3 yxx() const; |
|---|
| 352 | Vector3 zxx() const; |
|---|
| 353 | Vector3 wxx() const; |
|---|
| 354 | Vector3 xyx() const; |
|---|
| 355 | Vector3 yyx() const; |
|---|
| 356 | Vector3 zyx() const; |
|---|
| 357 | Vector3 wyx() const; |
|---|
| 358 | Vector3 xzx() const; |
|---|
| 359 | Vector3 yzx() const; |
|---|
| 360 | Vector3 zzx() const; |
|---|
| 361 | Vector3 wzx() const; |
|---|
| 362 | Vector3 xwx() const; |
|---|
| 363 | Vector3 ywx() const; |
|---|
| 364 | Vector3 zwx() const; |
|---|
| 365 | Vector3 wwx() const; |
|---|
| 366 | Vector3 xxy() const; |
|---|
| 367 | Vector3 yxy() const; |
|---|
| 368 | Vector3 zxy() const; |
|---|
| 369 | Vector3 wxy() const; |
|---|
| 370 | Vector3 xyy() const; |
|---|
| 371 | Vector3 yyy() const; |
|---|
| 372 | Vector3 zyy() const; |
|---|
| 373 | Vector3 wyy() const; |
|---|
| 374 | Vector3 xzy() const; |
|---|
| 375 | Vector3 yzy() const; |
|---|
| 376 | Vector3 zzy() const; |
|---|
| 377 | Vector3 wzy() const; |
|---|
| 378 | Vector3 xwy() const; |
|---|
| 379 | Vector3 ywy() const; |
|---|
| 380 | Vector3 zwy() const; |
|---|
| 381 | Vector3 wwy() const; |
|---|
| 382 | Vector3 xxz() const; |
|---|
| 383 | Vector3 yxz() const; |
|---|
| 384 | Vector3 zxz() const; |
|---|
| 385 | Vector3 wxz() const; |
|---|
| 386 | Vector3 xyz() const; |
|---|
| 387 | Vector3 yyz() const; |
|---|
| 388 | Vector3 zyz() const; |
|---|
| 389 | Vector3 wyz() const; |
|---|
| 390 | Vector3 xzz() const; |
|---|
| 391 | Vector3 yzz() const; |
|---|
| 392 | Vector3 zzz() const; |
|---|
| 393 | Vector3 wzz() const; |
|---|
| 394 | Vector3 xwz() const; |
|---|
| 395 | Vector3 ywz() const; |
|---|
| 396 | Vector3 zwz() const; |
|---|
| 397 | Vector3 wwz() const; |
|---|
| 398 | Vector3 xxw() const; |
|---|
| 399 | Vector3 yxw() const; |
|---|
| 400 | Vector3 zxw() const; |
|---|
| 401 | Vector3 wxw() const; |
|---|
| 402 | Vector3 xyw() const; |
|---|
| 403 | Vector3 yyw() const; |
|---|
| 404 | Vector3 zyw() const; |
|---|
| 405 | Vector3 wyw() const; |
|---|
| 406 | Vector3 xzw() const; |
|---|
| 407 | Vector3 yzw() const; |
|---|
| 408 | Vector3 zzw() const; |
|---|
| 409 | Vector3 wzw() const; |
|---|
| 410 | Vector3 xww() const; |
|---|
| 411 | Vector3 yww() const; |
|---|
| 412 | Vector3 zww() const; |
|---|
| 413 | Vector3 www() const; |
|---|
| 414 | |
|---|
| 415 | // 4-char swizzles |
|---|
| 416 | |
|---|
| 417 | Vector4 xxxx() const; |
|---|
| 418 | Vector4 yxxx() const; |
|---|
| 419 | Vector4 zxxx() const; |
|---|
| 420 | Vector4 wxxx() const; |
|---|
| 421 | Vector4 xyxx() const; |
|---|
| 422 | Vector4 yyxx() const; |
|---|
| 423 | Vector4 zyxx() const; |
|---|
| 424 | Vector4 wyxx() const; |
|---|
| 425 | Vector4 xzxx() const; |
|---|
| 426 | Vector4 yzxx() const; |
|---|
| 427 | Vector4 zzxx() const; |
|---|
| 428 | Vector4 wzxx() const; |
|---|
| 429 | Vector4 xwxx() const; |
|---|
| 430 | Vector4 ywxx() const; |
|---|
| 431 | Vector4 zwxx() const; |
|---|
| 432 | Vector4 wwxx() const; |
|---|
| 433 | Vector4 xxyx() const; |
|---|
| 434 | Vector4 yxyx() const; |
|---|
| 435 | Vector4 zxyx() const; |
|---|
| 436 | Vector4 wxyx() const; |
|---|
| 437 | Vector4 xyyx() const; |
|---|
| 438 | Vector4 yyyx() const; |
|---|
| 439 | Vector4 zyyx() const; |
|---|
| 440 | Vector4 wyyx() const; |
|---|
| 441 | Vector4 xzyx() const; |
|---|
| 442 | Vector4 yzyx() const; |
|---|
| 443 | Vector4 zzyx() const; |
|---|
| 444 | Vector4 wzyx() const; |
|---|
| 445 | Vector4 xwyx() const; |
|---|
| 446 | Vector4 ywyx() const; |
|---|
| 447 | Vector4 zwyx() const; |
|---|
| 448 | Vector4 wwyx() const; |
|---|
| 449 | Vector4 xxzx() const; |
|---|
| 450 | Vector4 yxzx() const; |
|---|
| 451 | Vector4 zxzx() const; |
|---|
| 452 | Vector4 wxzx() const; |
|---|
| 453 | Vector4 xyzx() const; |
|---|
| 454 | Vector4 yyzx() const; |
|---|
| 455 | Vector4 zyzx() const; |
|---|
| 456 | Vector4 wyzx() const; |
|---|
| 457 | Vector4 xzzx() const; |
|---|
| 458 | Vector4 yzzx() const; |
|---|
| 459 | Vector4 zzzx() const; |
|---|
| 460 | Vector4 wzzx() const; |
|---|
| 461 | Vector4 xwzx() const; |
|---|
| 462 | Vector4 ywzx() const; |
|---|
| 463 | Vector4 zwzx() const; |
|---|
| 464 | Vector4 wwzx() const; |
|---|
| 465 | Vector4 xxwx() const; |
|---|
| 466 | Vector4 yxwx() const; |
|---|
| 467 | Vector4 zxwx() const; |
|---|
| 468 | Vector4 wxwx() const; |
|---|
| 469 | Vector4 xywx() const; |
|---|
| 470 | Vector4 yywx() const; |
|---|
| 471 | Vector4 zywx() const; |
|---|
| 472 | Vector4 wywx() const; |
|---|
| 473 | Vector4 xzwx() const; |
|---|
| 474 | Vector4 yzwx() const; |
|---|
| 475 | Vector4 zzwx() const; |
|---|
| 476 | Vector4 wzwx() const; |
|---|
| 477 | Vector4 xwwx() const; |
|---|
| 478 | Vector4 ywwx() const; |
|---|
| 479 | Vector4 zwwx() const; |
|---|
| 480 | Vector4 wwwx() const; |
|---|
| 481 | Vector4 xxxy() const; |
|---|
| 482 | Vector4 yxxy() const; |
|---|
| 483 | Vector4 zxxy() const; |
|---|
| 484 | Vector4 wxxy() const; |
|---|
| 485 | Vector4 xyxy() const; |
|---|
| 486 | Vector4 yyxy() const; |
|---|
| 487 | Vector4 zyxy() const; |
|---|
| 488 | Vector4 wyxy() const; |
|---|
| 489 | Vector4 xzxy() const; |
|---|
| 490 | Vector4 yzxy() const; |
|---|
| 491 | Vector4 zzxy() const; |
|---|
| 492 | Vector4 wzxy() const; |
|---|
| 493 | Vector4 xwxy() const; |
|---|
| 494 | Vector4 ywxy() const; |
|---|
| 495 | Vector4 zwxy() const; |
|---|
| 496 | Vector4 wwxy() const; |
|---|
| 497 | Vector4 xxyy() const; |
|---|
| 498 | Vector4 yxyy() const; |
|---|
| 499 | Vector4 zxyy() const; |
|---|
| 500 | Vector4 wxyy() const; |
|---|
| 501 | Vector4 xyyy() const; |
|---|
| 502 | Vector4 yyyy() const; |
|---|
| 503 | Vector4 zyyy() const; |
|---|
| 504 | Vector4 wyyy() const; |
|---|
| 505 | Vector4 xzyy() const; |
|---|
| 506 | Vector4 yzyy() const; |
|---|
| 507 | Vector4 zzyy() const; |
|---|
| 508 | Vector4 wzyy() const; |
|---|
| 509 | Vector4 xwyy() const; |
|---|
| 510 | Vector4 ywyy() const; |
|---|
| 511 | Vector4 zwyy() const; |
|---|
| 512 | Vector4 wwyy() const; |
|---|
| 513 | Vector4 xxzy() const; |
|---|
| 514 | Vector4 yxzy() const; |
|---|
| 515 | Vector4 zxzy() const; |
|---|
| 516 | Vector4 wxzy() const; |
|---|
| 517 | Vector4 xyzy() const; |
|---|
| 518 | Vector4 yyzy() const; |
|---|
| 519 | Vector4 zyzy() const; |
|---|
| 520 | Vector4 wyzy() const; |
|---|
| 521 | Vector4 xzzy() const; |
|---|
| 522 | Vector4 yzzy() const; |
|---|
| 523 | Vector4 zzzy() const; |
|---|
| 524 | Vector4 wzzy() const; |
|---|
| 525 | Vector4 xwzy() const; |
|---|
| 526 | Vector4 ywzy() const; |
|---|
| 527 | Vector4 zwzy() const; |
|---|
| 528 | Vector4 wwzy() const; |
|---|
| 529 | Vector4 xxwy() const; |
|---|
| 530 | Vector4 yxwy() const; |
|---|
| 531 | Vector4 zxwy() const; |
|---|
| 532 | Vector4 wxwy() const; |
|---|
| 533 | Vector4 xywy() const; |
|---|
| 534 | Vector4 yywy() const; |
|---|
| 535 | Vector4 zywy() const; |
|---|
| 536 | Vector4 wywy() const; |
|---|
| 537 | Vector4 xzwy() const; |
|---|
| 538 | Vector4 yzwy() const; |
|---|
| 539 | Vector4 zzwy() const; |
|---|
| 540 | Vector4 wzwy() const; |
|---|
| 541 | Vector4 xwwy() const; |
|---|
| 542 | Vector4 ywwy() const; |
|---|
| 543 | Vector4 zwwy() const; |
|---|
| 544 | Vector4 wwwy() const; |
|---|
| 545 | Vector4 xxxz() const; |
|---|
| 546 | Vector4 yxxz() const; |
|---|
| 547 | Vector4 zxxz() const; |
|---|
| 548 | Vector4 wxxz() const; |
|---|
| 549 | Vector4 xyxz() const; |
|---|
| 550 | Vector4 yyxz() const; |
|---|
| 551 | Vector4 zyxz() const; |
|---|
| 552 | Vector4 wyxz() const; |
|---|
| 553 | Vector4 xzxz() const; |
|---|
| 554 | Vector4 yzxz() const; |
|---|
| 555 | Vector4 zzxz() const; |
|---|
| 556 | Vector4 wzxz() const; |
|---|
| 557 | Vector4 xwxz() const; |
|---|
| 558 | Vector4 ywxz() const; |
|---|
| 559 | Vector4 zwxz() const; |
|---|
| 560 | Vector4 wwxz() const; |
|---|
| 561 | Vector4 xxyz() const; |
|---|
| 562 | Vector4 yxyz() const; |
|---|
| 563 | Vector4 zxyz() const; |
|---|
| 564 | Vector4 wxyz() const; |
|---|
| 565 | Vector4 xyyz() const; |
|---|
| 566 | Vector4 yyyz() const; |
|---|
| 567 | Vector4 zyyz() const; |
|---|
| 568 | Vector4 wyyz() const; |
|---|
| 569 | Vector4 xzyz() const; |
|---|
| 570 | Vector4 yzyz() const; |
|---|
| 571 | Vector4 zzyz() const; |
|---|
| 572 | Vector4 wzyz() const; |
|---|
| 573 | Vector4 xwyz() const; |
|---|
| 574 | Vector4 ywyz() const; |
|---|
| 575 | Vector4 zwyz() const; |
|---|
| 576 | Vector4 wwyz() const; |
|---|
| 577 | Vector4 xxzz() const; |
|---|
| 578 | Vector4 yxzz() const; |
|---|
| 579 | Vector4 zxzz() const; |
|---|
| 580 | Vector4 wxzz() const; |
|---|
| 581 | Vector4 xyzz() const; |
|---|
| 582 | Vector4 yyzz() const; |
|---|
| 583 | Vector4 zyzz() const; |
|---|
| 584 | Vector4 wyzz() const; |
|---|
| 585 | Vector4 xzzz() const; |
|---|
| 586 | Vector4 yzzz() const; |
|---|
| 587 | Vector4 zzzz() const; |
|---|
| 588 | Vector4 wzzz() const; |
|---|
| 589 | Vector4 xwzz() const; |
|---|
| 590 | Vector4 ywzz() const; |
|---|
| 591 | Vector4 zwzz() const; |
|---|
| 592 | Vector4 wwzz() const; |
|---|
| 593 | Vector4 xxwz() const; |
|---|
| 594 | Vector4 yxwz() const; |
|---|
| 595 | Vector4 zxwz() const; |
|---|
| 596 | Vector4 wxwz() const; |
|---|
| 597 | Vector4 xywz() const; |
|---|
| 598 | Vector4 yywz() const; |
|---|
| 599 | Vector4 zywz() const; |
|---|
| 600 | Vector4 wywz() const; |
|---|
| 601 | Vector4 xzwz() const; |
|---|
| 602 | Vector4 yzwz() const; |
|---|
| 603 | Vector4 zzwz() const; |
|---|
| 604 | Vector4 wzwz() const; |
|---|
| 605 | Vector4 xwwz() const; |
|---|
| 606 | Vector4 ywwz() const; |
|---|
| 607 | Vector4 zwwz() const; |
|---|
| 608 | Vector4 wwwz() const; |
|---|
| 609 | Vector4 xxxw() const; |
|---|
| 610 | Vector4 yxxw() const; |
|---|
| 611 | Vector4 zxxw() const; |
|---|
| 612 | Vector4 wxxw() const; |
|---|
| 613 | Vector4 xyxw() const; |
|---|
| 614 | Vector4 yyxw() const; |
|---|
| 615 | Vector4 zyxw() const; |
|---|
| 616 | Vector4 wyxw() const; |
|---|
| 617 | Vector4 xzxw() const; |
|---|
| 618 | Vector4 yzxw() const; |
|---|
| 619 | Vector4 zzxw() const; |
|---|
| 620 | Vector4 wzxw() const; |
|---|
| 621 | Vector4 xwxw() const; |
|---|
| 622 | Vector4 ywxw() const; |
|---|
| 623 | Vector4 zwxw() const; |
|---|
| 624 | Vector4 wwxw() const; |
|---|
| 625 | Vector4 xxyw() const; |
|---|
| 626 | Vector4 yxyw() const; |
|---|
| 627 | Vector4 zxyw() const; |
|---|
| 628 | Vector4 wxyw() const; |
|---|
| 629 | Vector4 xyyw() const; |
|---|
| 630 | Vector4 yyyw() const; |
|---|
| 631 | Vector4 zyyw() const; |
|---|
| 632 | Vector4 wyyw() const; |
|---|
| 633 | Vector4 xzyw() const; |
|---|
| 634 | Vector4 yzyw() const; |
|---|
| 635 | Vector4 zzyw() const; |
|---|
| 636 | Vector4 wzyw() const; |
|---|
| 637 | Vector4 xwyw() const; |
|---|
| 638 | Vector4 ywyw() const; |
|---|
| 639 | Vector4 zwyw() const; |
|---|
| 640 | Vector4 wwyw() const; |
|---|
| 641 | Vector4 xxzw() const; |
|---|
| 642 | Vector4 yxzw() const; |
|---|
| 643 | Vector4 zxzw() const; |
|---|
| 644 | Vector4 wxzw() const; |
|---|
| 645 | Vector4 xyzw() const; |
|---|
| 646 | Vector4 yyzw() const; |
|---|
| 647 | Vector4 zyzw() const; |
|---|
| 648 | Vector4 wyzw() const; |
|---|
| 649 | Vector4 xzzw() const; |
|---|
| 650 | Vector4 yzzw() const; |
|---|
| 651 | Vector4 zzzw() const; |
|---|
| 652 | Vector4 wzzw() const; |
|---|
| 653 | Vector4 xwzw() const; |
|---|
| 654 | Vector4 ywzw() const; |
|---|
| 655 | Vector4 zwzw() const; |
|---|
| 656 | Vector4 wwzw() const; |
|---|
| 657 | Vector4 xxww() const; |
|---|
| 658 | Vector4 yxww() const; |
|---|
| 659 | Vector4 zxww() const; |
|---|
| 660 | Vector4 wxww() const; |
|---|
| 661 | Vector4 xyww() const; |
|---|
| 662 | Vector4 yyww() const; |
|---|
| 663 | Vector4 zyww() const; |
|---|
| 664 | Vector4 wyww() const; |
|---|
| 665 | Vector4 xzww() const; |
|---|
| 666 | Vector4 yzww() const; |
|---|
| 667 | Vector4 zzww() const; |
|---|
| 668 | Vector4 wzww() const; |
|---|
| 669 | Vector4 xwww() const; |
|---|
| 670 | Vector4 ywww() const; |
|---|
| 671 | Vector4 zwww() const; |
|---|
| 672 | Vector4 wwww() const; |
|---|
| 673 | }; |
|---|
| 674 | |
|---|
| 675 | inline Quat exp(const Quat& q) { |
|---|
| 676 | return q.exp(); |
|---|
| 677 | } |
|---|
| 678 | |
|---|
| 679 | inline Quat log(const Quat& q) { |
|---|
| 680 | return q.log(); |
|---|
| 681 | } |
|---|
| 682 | |
|---|
| 683 | inline G3D::Quat operator*(double s, const G3D::Quat& q) { |
|---|
| 684 | return q * (float)s; |
|---|
| 685 | } |
|---|
| 686 | |
|---|
| 687 | inline G3D::Quat operator*(float s, const G3D::Quat& q) { |
|---|
| 688 | return q * s; |
|---|
| 689 | } |
|---|
| 690 | |
|---|
| 691 | } // Namespace G3D |
|---|
| 692 | |
|---|
| 693 | // Outside the namespace to avoid overloading confusion for C++ |
|---|
| 694 | inline G3D::Quat pow(const G3D::Quat& q, double x) { |
|---|
| 695 | return q.pow((float)x); |
|---|
| 696 | } |
|---|
| 697 | |
|---|
| 698 | |
|---|
| 699 | |
|---|
| 700 | #include "Quat.inl" |
|---|
| 701 | |
|---|
| 702 | #endif |
|---|