1 | /** |
---|
2 | @file Matrix3.cpp |
---|
3 | |
---|
4 | 3x3 matrix class |
---|
5 | |
---|
6 | @author Morgan McGuire, graphics3d.com |
---|
7 | |
---|
8 | @created 2001-06-02 |
---|
9 | @edited 2006-04-06 |
---|
10 | */ |
---|
11 | |
---|
12 | #include "G3D/platform.h" |
---|
13 | #include "G3D/format.h" |
---|
14 | #include <memory.h> |
---|
15 | #include <assert.h> |
---|
16 | #include "G3D/Matrix3.h" |
---|
17 | #include "G3D/g3dmath.h" |
---|
18 | #include "G3D/Quat.h" |
---|
19 | |
---|
20 | namespace G3D { |
---|
21 | |
---|
22 | const float Matrix3::EPSILON = 1e-06f; |
---|
23 | |
---|
24 | const Matrix3& Matrix3::zero() { |
---|
25 | static Matrix3 m(0, 0, 0, 0, 0, 0, 0, 0, 0); |
---|
26 | return m; |
---|
27 | } |
---|
28 | |
---|
29 | const Matrix3& Matrix3::identity() { |
---|
30 | static Matrix3 m(1, 0, 0, 0, 1, 0, 0, 0, 1); |
---|
31 | return m; |
---|
32 | } |
---|
33 | |
---|
34 | // Deprecated. |
---|
35 | const Matrix3 Matrix3::ZERO(0, 0, 0, 0, 0, 0, 0, 0, 0); |
---|
36 | const Matrix3 Matrix3::IDENTITY(1, 0, 0, 0, 1, 0, 0, 0, 1); |
---|
37 | |
---|
38 | const float Matrix3::ms_fSvdEpsilon = 1e-04f; |
---|
39 | const int Matrix3::ms_iSvdMaxIterations = 32; |
---|
40 | |
---|
41 | bool Matrix3::fuzzyEq(const Matrix3& b) const { |
---|
42 | for (int r = 0; r < 3; ++r) { |
---|
43 | for (int c = 0; c < 3; ++c) { |
---|
44 | if (! G3D::fuzzyEq(elt[r][c], b[r][c])) { |
---|
45 | return false; |
---|
46 | } |
---|
47 | } |
---|
48 | } |
---|
49 | return true; |
---|
50 | } |
---|
51 | |
---|
52 | |
---|
53 | bool Matrix3::isOrthonormal() const { |
---|
54 | Vector3 X = getColumn(0); |
---|
55 | Vector3 Y = getColumn(1); |
---|
56 | Vector3 Z = getColumn(2); |
---|
57 | |
---|
58 | return |
---|
59 | (G3D::fuzzyEq(X.dot(Y), 0.0f) && |
---|
60 | G3D::fuzzyEq(Y.dot(Z), 0.0f) && |
---|
61 | G3D::fuzzyEq(X.dot(Z), 0.0f) && |
---|
62 | G3D::fuzzyEq(X.squaredMagnitude(), 1.0f) && |
---|
63 | G3D::fuzzyEq(Y.squaredMagnitude(), 1.0f) && |
---|
64 | G3D::fuzzyEq(Z.squaredMagnitude(), 1.0f)); |
---|
65 | } |
---|
66 | |
---|
67 | //---------------------------------------------------------------------------- |
---|
68 | Matrix3::Matrix3(const Quat& _q) { |
---|
69 | // Implementation from Watt and Watt, pg 362 |
---|
70 | // See also http://www.flipcode.com/documents/matrfaq.html#Q54 |
---|
71 | Quat q = _q.unitize(); |
---|
72 | float xx = 2.0f * q.x * q.x; |
---|
73 | float xy = 2.0f * q.x * q.y; |
---|
74 | float xz = 2.0f * q.x * q.z; |
---|
75 | float xw = 2.0f * q.x * q.w; |
---|
76 | |
---|
77 | float yy = 2.0f * q.y * q.y; |
---|
78 | float yz = 2.0f * q.y * q.z; |
---|
79 | float yw = 2.0f * q.y * q.w; |
---|
80 | |
---|
81 | float zz = 2.0f * q.z * q.z; |
---|
82 | float zw = 2.0f * q.z * q.w; |
---|
83 | |
---|
84 | set(1.0f - yy - zz, xy - zw, xz + yw, |
---|
85 | xy + zw, 1.0f - xx - zz, yz - xw, |
---|
86 | xz - yw, yz + xw, 1.0f - xx - yy); |
---|
87 | } |
---|
88 | |
---|
89 | //---------------------------------------------------------------------------- |
---|
90 | |
---|
91 | Matrix3::Matrix3 (const float aafEntry[3][3]) { |
---|
92 | memcpy(elt, aafEntry, 9*sizeof(float)); |
---|
93 | } |
---|
94 | |
---|
95 | //---------------------------------------------------------------------------- |
---|
96 | Matrix3::Matrix3 (const Matrix3& rkMatrix) { |
---|
97 | memcpy(elt, rkMatrix.elt, 9*sizeof(float)); |
---|
98 | } |
---|
99 | |
---|
100 | //---------------------------------------------------------------------------- |
---|
101 | Matrix3::Matrix3( |
---|
102 | float fEntry00, float fEntry01, float fEntry02, |
---|
103 | float fEntry10, float fEntry11, float fEntry12, |
---|
104 | float fEntry20, float fEntry21, float fEntry22) { |
---|
105 | set(fEntry00, fEntry01, fEntry02, |
---|
106 | fEntry10, fEntry11, fEntry12, |
---|
107 | fEntry20, fEntry21, fEntry22); |
---|
108 | } |
---|
109 | |
---|
110 | void Matrix3::set( |
---|
111 | float fEntry00, float fEntry01, float fEntry02, |
---|
112 | float fEntry10, float fEntry11, float fEntry12, |
---|
113 | float fEntry20, float fEntry21, float fEntry22) { |
---|
114 | |
---|
115 | elt[0][0] = fEntry00; |
---|
116 | elt[0][1] = fEntry01; |
---|
117 | elt[0][2] = fEntry02; |
---|
118 | elt[1][0] = fEntry10; |
---|
119 | elt[1][1] = fEntry11; |
---|
120 | elt[1][2] = fEntry12; |
---|
121 | elt[2][0] = fEntry20; |
---|
122 | elt[2][1] = fEntry21; |
---|
123 | elt[2][2] = fEntry22; |
---|
124 | } |
---|
125 | |
---|
126 | |
---|
127 | //---------------------------------------------------------------------------- |
---|
128 | Vector3 Matrix3::getColumn (int iCol) const { |
---|
129 | assert((0 <= iCol) && (iCol < 3)); |
---|
130 | return Vector3(elt[0][iCol], elt[1][iCol], |
---|
131 | elt[2][iCol]); |
---|
132 | } |
---|
133 | |
---|
134 | Vector3 Matrix3::getRow (int iRow) const { |
---|
135 | return Vector3(elt[iRow][0], elt[iRow][1], elt[iRow][2]); |
---|
136 | } |
---|
137 | |
---|
138 | void Matrix3::setColumn(int iCol, const Vector3 &vector) { |
---|
139 | debugAssert((iCol >= 0) && (iCol < 3)); |
---|
140 | elt[0][iCol] = vector.x; |
---|
141 | elt[1][iCol] = vector.y; |
---|
142 | elt[2][iCol] = vector.z; |
---|
143 | } |
---|
144 | |
---|
145 | |
---|
146 | void Matrix3::setRow(int iRow, const Vector3 &vector) { |
---|
147 | debugAssert((iRow >= 0) && (iRow < 3)); |
---|
148 | elt[iRow][0] = vector.x; |
---|
149 | elt[iRow][1] = vector.y; |
---|
150 | elt[iRow][2] = vector.z; |
---|
151 | } |
---|
152 | |
---|
153 | |
---|
154 | //---------------------------------------------------------------------------- |
---|
155 | bool Matrix3::operator== (const Matrix3& rkMatrix) const { |
---|
156 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
157 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
158 | if ( elt[iRow][iCol] != rkMatrix.elt[iRow][iCol] ) |
---|
159 | return false; |
---|
160 | } |
---|
161 | } |
---|
162 | |
---|
163 | return true; |
---|
164 | } |
---|
165 | |
---|
166 | //---------------------------------------------------------------------------- |
---|
167 | bool Matrix3::operator!= (const Matrix3& rkMatrix) const { |
---|
168 | return !operator==(rkMatrix); |
---|
169 | } |
---|
170 | |
---|
171 | //---------------------------------------------------------------------------- |
---|
172 | Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const { |
---|
173 | Matrix3 kSum; |
---|
174 | |
---|
175 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
176 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
177 | kSum.elt[iRow][iCol] = elt[iRow][iCol] + |
---|
178 | rkMatrix.elt[iRow][iCol]; |
---|
179 | } |
---|
180 | } |
---|
181 | |
---|
182 | return kSum; |
---|
183 | } |
---|
184 | |
---|
185 | //---------------------------------------------------------------------------- |
---|
186 | Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const { |
---|
187 | Matrix3 kDiff; |
---|
188 | |
---|
189 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
190 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
191 | kDiff.elt[iRow][iCol] = elt[iRow][iCol] - |
---|
192 | rkMatrix.elt[iRow][iCol]; |
---|
193 | } |
---|
194 | } |
---|
195 | |
---|
196 | return kDiff; |
---|
197 | } |
---|
198 | |
---|
199 | //---------------------------------------------------------------------------- |
---|
200 | Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const { |
---|
201 | Matrix3 kProd; |
---|
202 | |
---|
203 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
204 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
205 | kProd.elt[iRow][iCol] = |
---|
206 | elt[iRow][0] * rkMatrix.elt[0][iCol] + |
---|
207 | elt[iRow][1] * rkMatrix.elt[1][iCol] + |
---|
208 | elt[iRow][2] * rkMatrix.elt[2][iCol]; |
---|
209 | } |
---|
210 | } |
---|
211 | |
---|
212 | return kProd; |
---|
213 | } |
---|
214 | |
---|
215 | Matrix3& Matrix3::operator+= (const Matrix3& rkMatrix) { |
---|
216 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
217 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
218 | elt[iRow][iCol] = elt[iRow][iCol] + rkMatrix.elt[iRow][iCol]; |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | return *this; |
---|
223 | } |
---|
224 | |
---|
225 | Matrix3& Matrix3::operator-= (const Matrix3& rkMatrix) { |
---|
226 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
227 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
228 | elt[iRow][iCol] = elt[iRow][iCol] - rkMatrix.elt[iRow][iCol]; |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | return *this; |
---|
233 | } |
---|
234 | |
---|
235 | Matrix3& Matrix3::operator*= (const Matrix3& rkMatrix) { |
---|
236 | Matrix3 mulMat; |
---|
237 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
238 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
239 | mulMat.elt[iRow][iCol] = |
---|
240 | elt[iRow][0] * rkMatrix.elt[0][iCol] + |
---|
241 | elt[iRow][1] * rkMatrix.elt[1][iCol] + |
---|
242 | elt[iRow][2] * rkMatrix.elt[2][iCol]; |
---|
243 | } |
---|
244 | } |
---|
245 | |
---|
246 | *this = mulMat; |
---|
247 | return *this; |
---|
248 | } |
---|
249 | |
---|
250 | //---------------------------------------------------------------------------- |
---|
251 | Matrix3 Matrix3::operator- () const { |
---|
252 | Matrix3 kNeg; |
---|
253 | |
---|
254 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
255 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
256 | kNeg[iRow][iCol] = -elt[iRow][iCol]; |
---|
257 | } |
---|
258 | } |
---|
259 | |
---|
260 | return kNeg; |
---|
261 | } |
---|
262 | |
---|
263 | //---------------------------------------------------------------------------- |
---|
264 | Matrix3 Matrix3::operator* (float fScalar) const { |
---|
265 | Matrix3 kProd; |
---|
266 | |
---|
267 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
268 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
269 | kProd[iRow][iCol] = fScalar * elt[iRow][iCol]; |
---|
270 | } |
---|
271 | } |
---|
272 | |
---|
273 | return kProd; |
---|
274 | } |
---|
275 | |
---|
276 | //---------------------------------------------------------------------------- |
---|
277 | Matrix3 operator* (double fScalar, const Matrix3& rkMatrix) { |
---|
278 | Matrix3 kProd; |
---|
279 | |
---|
280 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
281 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
282 | kProd[iRow][iCol] = fScalar * rkMatrix.elt[iRow][iCol]; |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | return kProd; |
---|
287 | } |
---|
288 | |
---|
289 | Matrix3 operator* (float fScalar, const Matrix3& rkMatrix) { |
---|
290 | return (double)fScalar * rkMatrix; |
---|
291 | } |
---|
292 | |
---|
293 | |
---|
294 | Matrix3 operator* (int fScalar, const Matrix3& rkMatrix) { |
---|
295 | return (double)fScalar * rkMatrix; |
---|
296 | } |
---|
297 | //---------------------------------------------------------------------------- |
---|
298 | Matrix3 Matrix3::transpose () const { |
---|
299 | Matrix3 kTranspose; |
---|
300 | |
---|
301 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
302 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
303 | kTranspose[iRow][iCol] = elt[iCol][iRow]; |
---|
304 | } |
---|
305 | } |
---|
306 | |
---|
307 | return kTranspose; |
---|
308 | } |
---|
309 | |
---|
310 | //---------------------------------------------------------------------------- |
---|
311 | bool Matrix3::inverse (Matrix3& rkInverse, float fTolerance) const { |
---|
312 | // Invert a 3x3 using cofactors. This is about 8 times faster than |
---|
313 | // the Numerical Recipes code which uses Gaussian elimination. |
---|
314 | |
---|
315 | rkInverse[0][0] = elt[1][1] * elt[2][2] - |
---|
316 | elt[1][2] * elt[2][1]; |
---|
317 | rkInverse[0][1] = elt[0][2] * elt[2][1] - |
---|
318 | elt[0][1] * elt[2][2]; |
---|
319 | rkInverse[0][2] = elt[0][1] * elt[1][2] - |
---|
320 | elt[0][2] * elt[1][1]; |
---|
321 | rkInverse[1][0] = elt[1][2] * elt[2][0] - |
---|
322 | elt[1][0] * elt[2][2]; |
---|
323 | rkInverse[1][1] = elt[0][0] * elt[2][2] - |
---|
324 | elt[0][2] * elt[2][0]; |
---|
325 | rkInverse[1][2] = elt[0][2] * elt[1][0] - |
---|
326 | elt[0][0] * elt[1][2]; |
---|
327 | rkInverse[2][0] = elt[1][0] * elt[2][1] - |
---|
328 | elt[1][1] * elt[2][0]; |
---|
329 | rkInverse[2][1] = elt[0][1] * elt[2][0] - |
---|
330 | elt[0][0] * elt[2][1]; |
---|
331 | rkInverse[2][2] = elt[0][0] * elt[1][1] - |
---|
332 | elt[0][1] * elt[1][0]; |
---|
333 | |
---|
334 | float fDet = |
---|
335 | elt[0][0] * rkInverse[0][0] + |
---|
336 | elt[0][1] * rkInverse[1][0] + |
---|
337 | elt[0][2] * rkInverse[2][0]; |
---|
338 | |
---|
339 | if ( G3D::abs(fDet) <= fTolerance ) |
---|
340 | return false; |
---|
341 | |
---|
342 | float fInvDet = 1.0 / fDet; |
---|
343 | |
---|
344 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
345 | for (int iCol = 0; iCol < 3; iCol++) |
---|
346 | rkInverse[iRow][iCol] *= fInvDet; |
---|
347 | } |
---|
348 | |
---|
349 | return true; |
---|
350 | } |
---|
351 | |
---|
352 | //---------------------------------------------------------------------------- |
---|
353 | Matrix3 Matrix3::inverse (float fTolerance) const { |
---|
354 | Matrix3 kInverse = Matrix3::zero(); |
---|
355 | inverse(kInverse, fTolerance); |
---|
356 | return kInverse; |
---|
357 | } |
---|
358 | |
---|
359 | //---------------------------------------------------------------------------- |
---|
360 | float Matrix3::determinant () const { |
---|
361 | float fCofactor00 = elt[1][1] * elt[2][2] - |
---|
362 | elt[1][2] * elt[2][1]; |
---|
363 | float fCofactor10 = elt[1][2] * elt[2][0] - |
---|
364 | elt[1][0] * elt[2][2]; |
---|
365 | float fCofactor20 = elt[1][0] * elt[2][1] - |
---|
366 | elt[1][1] * elt[2][0]; |
---|
367 | |
---|
368 | float fDet = |
---|
369 | elt[0][0] * fCofactor00 + |
---|
370 | elt[0][1] * fCofactor10 + |
---|
371 | elt[0][2] * fCofactor20; |
---|
372 | |
---|
373 | return fDet; |
---|
374 | } |
---|
375 | |
---|
376 | //---------------------------------------------------------------------------- |
---|
377 | void Matrix3::bidiagonalize (Matrix3& kA, Matrix3& kL, |
---|
378 | Matrix3& kR) { |
---|
379 | float afV[3], afW[3]; |
---|
380 | float fLength, fSign, fT1, fInvT1, fT2; |
---|
381 | bool bIdentity; |
---|
382 | |
---|
383 | // map first column to (*,0,0) |
---|
384 | fLength = sqrt(kA[0][0] * kA[0][0] + kA[1][0] * kA[1][0] + |
---|
385 | kA[2][0] * kA[2][0]); |
---|
386 | |
---|
387 | if ( fLength > 0.0 ) { |
---|
388 | fSign = (kA[0][0] > 0.0 ? 1.0 : -1.0); |
---|
389 | fT1 = kA[0][0] + fSign * fLength; |
---|
390 | fInvT1 = 1.0 / fT1; |
---|
391 | afV[1] = kA[1][0] * fInvT1; |
---|
392 | afV[2] = kA[2][0] * fInvT1; |
---|
393 | |
---|
394 | fT2 = -2.0 / (1.0 + afV[1] * afV[1] + afV[2] * afV[2]); |
---|
395 | afW[0] = fT2 * (kA[0][0] + kA[1][0] * afV[1] + kA[2][0] * afV[2]); |
---|
396 | afW[1] = fT2 * (kA[0][1] + kA[1][1] * afV[1] + kA[2][1] * afV[2]); |
---|
397 | afW[2] = fT2 * (kA[0][2] + kA[1][2] * afV[1] + kA[2][2] * afV[2]); |
---|
398 | kA[0][0] += afW[0]; |
---|
399 | kA[0][1] += afW[1]; |
---|
400 | kA[0][2] += afW[2]; |
---|
401 | kA[1][1] += afV[1] * afW[1]; |
---|
402 | kA[1][2] += afV[1] * afW[2]; |
---|
403 | kA[2][1] += afV[2] * afW[1]; |
---|
404 | kA[2][2] += afV[2] * afW[2]; |
---|
405 | |
---|
406 | kL[0][0] = 1.0 + fT2; |
---|
407 | kL[0][1] = kL[1][0] = fT2 * afV[1]; |
---|
408 | kL[0][2] = kL[2][0] = fT2 * afV[2]; |
---|
409 | kL[1][1] = 1.0 + fT2 * afV[1] * afV[1]; |
---|
410 | kL[1][2] = kL[2][1] = fT2 * afV[1] * afV[2]; |
---|
411 | kL[2][2] = 1.0 + fT2 * afV[2] * afV[2]; |
---|
412 | bIdentity = false; |
---|
413 | } else { |
---|
414 | kL = Matrix3::identity(); |
---|
415 | bIdentity = true; |
---|
416 | } |
---|
417 | |
---|
418 | // map first row to (*,*,0) |
---|
419 | fLength = sqrt(kA[0][1] * kA[0][1] + kA[0][2] * kA[0][2]); |
---|
420 | |
---|
421 | if ( fLength > 0.0 ) { |
---|
422 | fSign = (kA[0][1] > 0.0 ? 1.0 : -1.0); |
---|
423 | fT1 = kA[0][1] + fSign * fLength; |
---|
424 | afV[2] = kA[0][2] / fT1; |
---|
425 | |
---|
426 | fT2 = -2.0 / (1.0 + afV[2] * afV[2]); |
---|
427 | afW[0] = fT2 * (kA[0][1] + kA[0][2] * afV[2]); |
---|
428 | afW[1] = fT2 * (kA[1][1] + kA[1][2] * afV[2]); |
---|
429 | afW[2] = fT2 * (kA[2][1] + kA[2][2] * afV[2]); |
---|
430 | kA[0][1] += afW[0]; |
---|
431 | kA[1][1] += afW[1]; |
---|
432 | kA[1][2] += afW[1] * afV[2]; |
---|
433 | kA[2][1] += afW[2]; |
---|
434 | kA[2][2] += afW[2] * afV[2]; |
---|
435 | |
---|
436 | kR[0][0] = 1.0; |
---|
437 | kR[0][1] = kR[1][0] = 0.0; |
---|
438 | kR[0][2] = kR[2][0] = 0.0; |
---|
439 | kR[1][1] = 1.0 + fT2; |
---|
440 | kR[1][2] = kR[2][1] = fT2 * afV[2]; |
---|
441 | kR[2][2] = 1.0 + fT2 * afV[2] * afV[2]; |
---|
442 | } else { |
---|
443 | kR = Matrix3::identity(); |
---|
444 | } |
---|
445 | |
---|
446 | // map second column to (*,*,0) |
---|
447 | fLength = sqrt(kA[1][1] * kA[1][1] + kA[2][1] * kA[2][1]); |
---|
448 | |
---|
449 | if ( fLength > 0.0 ) { |
---|
450 | fSign = (kA[1][1] > 0.0 ? 1.0 : -1.0); |
---|
451 | fT1 = kA[1][1] + fSign * fLength; |
---|
452 | afV[2] = kA[2][1] / fT1; |
---|
453 | |
---|
454 | fT2 = -2.0 / (1.0 + afV[2] * afV[2]); |
---|
455 | afW[1] = fT2 * (kA[1][1] + kA[2][1] * afV[2]); |
---|
456 | afW[2] = fT2 * (kA[1][2] + kA[2][2] * afV[2]); |
---|
457 | kA[1][1] += afW[1]; |
---|
458 | kA[1][2] += afW[2]; |
---|
459 | kA[2][2] += afV[2] * afW[2]; |
---|
460 | |
---|
461 | float fA = 1.0 + fT2; |
---|
462 | float fB = fT2 * afV[2]; |
---|
463 | float fC = 1.0 + fB * afV[2]; |
---|
464 | |
---|
465 | if ( bIdentity ) { |
---|
466 | kL[0][0] = 1.0; |
---|
467 | kL[0][1] = kL[1][0] = 0.0; |
---|
468 | kL[0][2] = kL[2][0] = 0.0; |
---|
469 | kL[1][1] = fA; |
---|
470 | kL[1][2] = kL[2][1] = fB; |
---|
471 | kL[2][2] = fC; |
---|
472 | } else { |
---|
473 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
474 | float fTmp0 = kL[iRow][1]; |
---|
475 | float fTmp1 = kL[iRow][2]; |
---|
476 | kL[iRow][1] = fA * fTmp0 + fB * fTmp1; |
---|
477 | kL[iRow][2] = fB * fTmp0 + fC * fTmp1; |
---|
478 | } |
---|
479 | } |
---|
480 | } |
---|
481 | } |
---|
482 | |
---|
483 | //---------------------------------------------------------------------------- |
---|
484 | void Matrix3::golubKahanStep (Matrix3& kA, Matrix3& kL, |
---|
485 | Matrix3& kR) { |
---|
486 | float fT11 = kA[0][1] * kA[0][1] + kA[1][1] * kA[1][1]; |
---|
487 | float fT22 = kA[1][2] * kA[1][2] + kA[2][2] * kA[2][2]; |
---|
488 | float fT12 = kA[1][1] * kA[1][2]; |
---|
489 | float fTrace = fT11 + fT22; |
---|
490 | float fDiff = fT11 - fT22; |
---|
491 | float fDiscr = sqrt(fDiff * fDiff + 4.0 * fT12 * fT12); |
---|
492 | float fRoot1 = 0.5 * (fTrace + fDiscr); |
---|
493 | float fRoot2 = 0.5 * (fTrace - fDiscr); |
---|
494 | |
---|
495 | // adjust right |
---|
496 | float fY = kA[0][0] - (G3D::abs(fRoot1 - fT22) <= |
---|
497 | G3D::abs(fRoot2 - fT22) ? fRoot1 : fRoot2); |
---|
498 | float fZ = kA[0][1]; |
---|
499 | float fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); |
---|
500 | float fSin = fZ * fInvLength; |
---|
501 | float fCos = -fY * fInvLength; |
---|
502 | |
---|
503 | float fTmp0 = kA[0][0]; |
---|
504 | float fTmp1 = kA[0][1]; |
---|
505 | kA[0][0] = fCos * fTmp0 - fSin * fTmp1; |
---|
506 | kA[0][1] = fSin * fTmp0 + fCos * fTmp1; |
---|
507 | kA[1][0] = -fSin * kA[1][1]; |
---|
508 | kA[1][1] *= fCos; |
---|
509 | |
---|
510 | int iRow; |
---|
511 | |
---|
512 | for (iRow = 0; iRow < 3; iRow++) { |
---|
513 | fTmp0 = kR[0][iRow]; |
---|
514 | fTmp1 = kR[1][iRow]; |
---|
515 | kR[0][iRow] = fCos * fTmp0 - fSin * fTmp1; |
---|
516 | kR[1][iRow] = fSin * fTmp0 + fCos * fTmp1; |
---|
517 | } |
---|
518 | |
---|
519 | // adjust left |
---|
520 | fY = kA[0][0]; |
---|
521 | |
---|
522 | fZ = kA[1][0]; |
---|
523 | |
---|
524 | fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); |
---|
525 | |
---|
526 | fSin = fZ * fInvLength; |
---|
527 | |
---|
528 | fCos = -fY * fInvLength; |
---|
529 | |
---|
530 | kA[0][0] = fCos * kA[0][0] - fSin * kA[1][0]; |
---|
531 | |
---|
532 | fTmp0 = kA[0][1]; |
---|
533 | |
---|
534 | fTmp1 = kA[1][1]; |
---|
535 | |
---|
536 | kA[0][1] = fCos * fTmp0 - fSin * fTmp1; |
---|
537 | |
---|
538 | kA[1][1] = fSin * fTmp0 + fCos * fTmp1; |
---|
539 | |
---|
540 | kA[0][2] = -fSin * kA[1][2]; |
---|
541 | |
---|
542 | kA[1][2] *= fCos; |
---|
543 | |
---|
544 | int iCol; |
---|
545 | |
---|
546 | for (iCol = 0; iCol < 3; iCol++) { |
---|
547 | fTmp0 = kL[iCol][0]; |
---|
548 | fTmp1 = kL[iCol][1]; |
---|
549 | kL[iCol][0] = fCos * fTmp0 - fSin * fTmp1; |
---|
550 | kL[iCol][1] = fSin * fTmp0 + fCos * fTmp1; |
---|
551 | } |
---|
552 | |
---|
553 | // adjust right |
---|
554 | fY = kA[0][1]; |
---|
555 | |
---|
556 | fZ = kA[0][2]; |
---|
557 | |
---|
558 | fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); |
---|
559 | |
---|
560 | fSin = fZ * fInvLength; |
---|
561 | |
---|
562 | fCos = -fY * fInvLength; |
---|
563 | |
---|
564 | kA[0][1] = fCos * kA[0][1] - fSin * kA[0][2]; |
---|
565 | |
---|
566 | fTmp0 = kA[1][1]; |
---|
567 | |
---|
568 | fTmp1 = kA[1][2]; |
---|
569 | |
---|
570 | kA[1][1] = fCos * fTmp0 - fSin * fTmp1; |
---|
571 | |
---|
572 | kA[1][2] = fSin * fTmp0 + fCos * fTmp1; |
---|
573 | |
---|
574 | kA[2][1] = -fSin * kA[2][2]; |
---|
575 | |
---|
576 | kA[2][2] *= fCos; |
---|
577 | |
---|
578 | for (iRow = 0; iRow < 3; iRow++) { |
---|
579 | fTmp0 = kR[1][iRow]; |
---|
580 | fTmp1 = kR[2][iRow]; |
---|
581 | kR[1][iRow] = fCos * fTmp0 - fSin * fTmp1; |
---|
582 | kR[2][iRow] = fSin * fTmp0 + fCos * fTmp1; |
---|
583 | } |
---|
584 | |
---|
585 | // adjust left |
---|
586 | fY = kA[1][1]; |
---|
587 | |
---|
588 | fZ = kA[2][1]; |
---|
589 | |
---|
590 | fInvLength = 1.0 / sqrt(fY * fY + fZ * fZ); |
---|
591 | |
---|
592 | fSin = fZ * fInvLength; |
---|
593 | |
---|
594 | fCos = -fY * fInvLength; |
---|
595 | |
---|
596 | kA[1][1] = fCos * kA[1][1] - fSin * kA[2][1]; |
---|
597 | |
---|
598 | fTmp0 = kA[1][2]; |
---|
599 | |
---|
600 | fTmp1 = kA[2][2]; |
---|
601 | |
---|
602 | kA[1][2] = fCos * fTmp0 - fSin * fTmp1; |
---|
603 | |
---|
604 | kA[2][2] = fSin * fTmp0 + fCos * fTmp1; |
---|
605 | |
---|
606 | for (iCol = 0; iCol < 3; iCol++) { |
---|
607 | fTmp0 = kL[iCol][1]; |
---|
608 | fTmp1 = kL[iCol][2]; |
---|
609 | kL[iCol][1] = fCos * fTmp0 - fSin * fTmp1; |
---|
610 | kL[iCol][2] = fSin * fTmp0 + fCos * fTmp1; |
---|
611 | } |
---|
612 | } |
---|
613 | |
---|
614 | //---------------------------------------------------------------------------- |
---|
615 | void Matrix3::singularValueDecomposition (Matrix3& kL, Vector3& kS, |
---|
616 | Matrix3& kR) const { |
---|
617 | int iRow, iCol; |
---|
618 | |
---|
619 | Matrix3 kA = *this; |
---|
620 | bidiagonalize(kA, kL, kR); |
---|
621 | |
---|
622 | for (int i = 0; i < ms_iSvdMaxIterations; i++) { |
---|
623 | float fTmp, fTmp0, fTmp1; |
---|
624 | float fSin0, fCos0, fTan0; |
---|
625 | float fSin1, fCos1, fTan1; |
---|
626 | |
---|
627 | bool bTest1 = (G3D::abs(kA[0][1]) <= |
---|
628 | ms_fSvdEpsilon * (G3D::abs(kA[0][0]) + G3D::abs(kA[1][1]))); |
---|
629 | bool bTest2 = (G3D::abs(kA[1][2]) <= |
---|
630 | ms_fSvdEpsilon * (G3D::abs(kA[1][1]) + G3D::abs(kA[2][2]))); |
---|
631 | |
---|
632 | if ( bTest1 ) { |
---|
633 | if ( bTest2 ) { |
---|
634 | kS[0] = kA[0][0]; |
---|
635 | kS[1] = kA[1][1]; |
---|
636 | kS[2] = kA[2][2]; |
---|
637 | break; |
---|
638 | } else { |
---|
639 | // 2x2 closed form factorization |
---|
640 | fTmp = (kA[1][1] * kA[1][1] - kA[2][2] * kA[2][2] + |
---|
641 | kA[1][2] * kA[1][2]) / (kA[1][2] * kA[2][2]); |
---|
642 | fTan0 = 0.5 * (fTmp + sqrt(fTmp * fTmp + 4.0)); |
---|
643 | fCos0 = 1.0 / sqrt(1.0 + fTan0 * fTan0); |
---|
644 | fSin0 = fTan0 * fCos0; |
---|
645 | |
---|
646 | for (iCol = 0; iCol < 3; iCol++) { |
---|
647 | fTmp0 = kL[iCol][1]; |
---|
648 | fTmp1 = kL[iCol][2]; |
---|
649 | kL[iCol][1] = fCos0 * fTmp0 - fSin0 * fTmp1; |
---|
650 | kL[iCol][2] = fSin0 * fTmp0 + fCos0 * fTmp1; |
---|
651 | } |
---|
652 | |
---|
653 | fTan1 = (kA[1][2] - kA[2][2] * fTan0) / kA[1][1]; |
---|
654 | fCos1 = 1.0 / sqrt(1.0 + fTan1 * fTan1); |
---|
655 | fSin1 = -fTan1 * fCos1; |
---|
656 | |
---|
657 | for (iRow = 0; iRow < 3; iRow++) { |
---|
658 | fTmp0 = kR[1][iRow]; |
---|
659 | fTmp1 = kR[2][iRow]; |
---|
660 | kR[1][iRow] = fCos1 * fTmp0 - fSin1 * fTmp1; |
---|
661 | kR[2][iRow] = fSin1 * fTmp0 + fCos1 * fTmp1; |
---|
662 | } |
---|
663 | |
---|
664 | kS[0] = kA[0][0]; |
---|
665 | kS[1] = fCos0 * fCos1 * kA[1][1] - |
---|
666 | fSin1 * (fCos0 * kA[1][2] - fSin0 * kA[2][2]); |
---|
667 | kS[2] = fSin0 * fSin1 * kA[1][1] + |
---|
668 | fCos1 * (fSin0 * kA[1][2] + fCos0 * kA[2][2]); |
---|
669 | break; |
---|
670 | } |
---|
671 | } else { |
---|
672 | if ( bTest2 ) { |
---|
673 | // 2x2 closed form factorization |
---|
674 | fTmp = (kA[0][0] * kA[0][0] + kA[1][1] * kA[1][1] - |
---|
675 | kA[0][1] * kA[0][1]) / (kA[0][1] * kA[1][1]); |
---|
676 | fTan0 = 0.5 * ( -fTmp + sqrt(fTmp * fTmp + 4.0)); |
---|
677 | fCos0 = 1.0 / sqrt(1.0 + fTan0 * fTan0); |
---|
678 | fSin0 = fTan0 * fCos0; |
---|
679 | |
---|
680 | for (iCol = 0; iCol < 3; iCol++) { |
---|
681 | fTmp0 = kL[iCol][0]; |
---|
682 | fTmp1 = kL[iCol][1]; |
---|
683 | kL[iCol][0] = fCos0 * fTmp0 - fSin0 * fTmp1; |
---|
684 | kL[iCol][1] = fSin0 * fTmp0 + fCos0 * fTmp1; |
---|
685 | } |
---|
686 | |
---|
687 | fTan1 = (kA[0][1] - kA[1][1] * fTan0) / kA[0][0]; |
---|
688 | fCos1 = 1.0 / sqrt(1.0 + fTan1 * fTan1); |
---|
689 | fSin1 = -fTan1 * fCos1; |
---|
690 | |
---|
691 | for (iRow = 0; iRow < 3; iRow++) { |
---|
692 | fTmp0 = kR[0][iRow]; |
---|
693 | fTmp1 = kR[1][iRow]; |
---|
694 | kR[0][iRow] = fCos1 * fTmp0 - fSin1 * fTmp1; |
---|
695 | kR[1][iRow] = fSin1 * fTmp0 + fCos1 * fTmp1; |
---|
696 | } |
---|
697 | |
---|
698 | kS[0] = fCos0 * fCos1 * kA[0][0] - |
---|
699 | fSin1 * (fCos0 * kA[0][1] - fSin0 * kA[1][1]); |
---|
700 | kS[1] = fSin0 * fSin1 * kA[0][0] + |
---|
701 | fCos1 * (fSin0 * kA[0][1] + fCos0 * kA[1][1]); |
---|
702 | kS[2] = kA[2][2]; |
---|
703 | break; |
---|
704 | } else { |
---|
705 | golubKahanStep(kA, kL, kR); |
---|
706 | } |
---|
707 | } |
---|
708 | } |
---|
709 | |
---|
710 | // positize diagonal |
---|
711 | for (iRow = 0; iRow < 3; iRow++) { |
---|
712 | if ( kS[iRow] < 0.0 ) { |
---|
713 | kS[iRow] = -kS[iRow]; |
---|
714 | |
---|
715 | for (iCol = 0; iCol < 3; iCol++) |
---|
716 | kR[iRow][iCol] = -kR[iRow][iCol]; |
---|
717 | } |
---|
718 | } |
---|
719 | } |
---|
720 | |
---|
721 | //---------------------------------------------------------------------------- |
---|
722 | void Matrix3::singularValueComposition (const Matrix3& kL, |
---|
723 | const Vector3& kS, const Matrix3& kR) { |
---|
724 | int iRow, iCol; |
---|
725 | Matrix3 kTmp; |
---|
726 | |
---|
727 | // product S*R |
---|
728 | for (iRow = 0; iRow < 3; iRow++) { |
---|
729 | for (iCol = 0; iCol < 3; iCol++) |
---|
730 | kTmp[iRow][iCol] = kS[iRow] * kR[iRow][iCol]; |
---|
731 | } |
---|
732 | |
---|
733 | // product L*S*R |
---|
734 | for (iRow = 0; iRow < 3; iRow++) { |
---|
735 | for (iCol = 0; iCol < 3; iCol++) { |
---|
736 | elt[iRow][iCol] = 0.0; |
---|
737 | |
---|
738 | for (int iMid = 0; iMid < 3; iMid++) |
---|
739 | elt[iRow][iCol] += kL[iRow][iMid] * kTmp[iMid][iCol]; |
---|
740 | } |
---|
741 | } |
---|
742 | } |
---|
743 | |
---|
744 | //---------------------------------------------------------------------------- |
---|
745 | void Matrix3::orthonormalize () { |
---|
746 | // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is |
---|
747 | // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2], |
---|
748 | // |
---|
749 | // q0 = m0/|m0| |
---|
750 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
---|
751 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
---|
752 | // |
---|
753 | // where |V| indicates length of vector V and A*B indicates dot |
---|
754 | // product of vectors A and B. |
---|
755 | |
---|
756 | // compute q0 |
---|
757 | float fInvLength = 1.0 / sqrt(elt[0][0] * elt[0][0] |
---|
758 | + elt[1][0] * elt[1][0] + |
---|
759 | elt[2][0] * elt[2][0]); |
---|
760 | |
---|
761 | elt[0][0] *= fInvLength; |
---|
762 | elt[1][0] *= fInvLength; |
---|
763 | elt[2][0] *= fInvLength; |
---|
764 | |
---|
765 | // compute q1 |
---|
766 | float fDot0 = |
---|
767 | elt[0][0] * elt[0][1] + |
---|
768 | elt[1][0] * elt[1][1] + |
---|
769 | elt[2][0] * elt[2][1]; |
---|
770 | |
---|
771 | elt[0][1] -= fDot0 * elt[0][0]; |
---|
772 | elt[1][1] -= fDot0 * elt[1][0]; |
---|
773 | elt[2][1] -= fDot0 * elt[2][0]; |
---|
774 | |
---|
775 | fInvLength = 1.0 / sqrt(elt[0][1] * elt[0][1] + |
---|
776 | elt[1][1] * elt[1][1] + |
---|
777 | elt[2][1] * elt[2][1]); |
---|
778 | |
---|
779 | elt[0][1] *= fInvLength; |
---|
780 | elt[1][1] *= fInvLength; |
---|
781 | elt[2][1] *= fInvLength; |
---|
782 | |
---|
783 | // compute q2 |
---|
784 | float fDot1 = |
---|
785 | elt[0][1] * elt[0][2] + |
---|
786 | elt[1][1] * elt[1][2] + |
---|
787 | elt[2][1] * elt[2][2]; |
---|
788 | |
---|
789 | fDot0 = |
---|
790 | elt[0][0] * elt[0][2] + |
---|
791 | elt[1][0] * elt[1][2] + |
---|
792 | elt[2][0] * elt[2][2]; |
---|
793 | |
---|
794 | elt[0][2] -= fDot0 * elt[0][0] + fDot1 * elt[0][1]; |
---|
795 | elt[1][2] -= fDot0 * elt[1][0] + fDot1 * elt[1][1]; |
---|
796 | elt[2][2] -= fDot0 * elt[2][0] + fDot1 * elt[2][1]; |
---|
797 | |
---|
798 | fInvLength = 1.0 / sqrt(elt[0][2] * elt[0][2] + |
---|
799 | elt[1][2] * elt[1][2] + |
---|
800 | elt[2][2] * elt[2][2]); |
---|
801 | |
---|
802 | elt[0][2] *= fInvLength; |
---|
803 | elt[1][2] *= fInvLength; |
---|
804 | elt[2][2] *= fInvLength; |
---|
805 | } |
---|
806 | |
---|
807 | //---------------------------------------------------------------------------- |
---|
808 | void Matrix3::qDUDecomposition (Matrix3& kQ, |
---|
809 | Vector3& kD, Vector3& kU) const { |
---|
810 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal, |
---|
811 | // and U is upper triangular with ones on its diagonal. Algorithm uses |
---|
812 | // Gram-Schmidt orthogonalization (the QR algorithm). |
---|
813 | // |
---|
814 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then |
---|
815 | // |
---|
816 | // q0 = m0/|m0| |
---|
817 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
---|
818 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
---|
819 | // |
---|
820 | // where |V| indicates length of vector V and A*B indicates dot |
---|
821 | // product of vectors A and B. The matrix R has entries |
---|
822 | // |
---|
823 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 |
---|
824 | // r10 = 0 r11 = q1*m1 r12 = q1*m2 |
---|
825 | // r20 = 0 r21 = 0 r22 = q2*m2 |
---|
826 | // |
---|
827 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, |
---|
828 | // u02 = r02/r00, and u12 = r12/r11. |
---|
829 | |
---|
830 | // Q = rotation |
---|
831 | // D = scaling |
---|
832 | // U = shear |
---|
833 | |
---|
834 | // D stores the three diagonal entries r00, r11, r22 |
---|
835 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 |
---|
836 | |
---|
837 | // build orthogonal matrix Q |
---|
838 | float fInvLength = 1.0 / sqrt(elt[0][0] * elt[0][0] |
---|
839 | + elt[1][0] * elt[1][0] + |
---|
840 | elt[2][0] * elt[2][0]); |
---|
841 | kQ[0][0] = elt[0][0] * fInvLength; |
---|
842 | kQ[1][0] = elt[1][0] * fInvLength; |
---|
843 | kQ[2][0] = elt[2][0] * fInvLength; |
---|
844 | |
---|
845 | float fDot = kQ[0][0] * elt[0][1] + kQ[1][0] * elt[1][1] + |
---|
846 | kQ[2][0] * elt[2][1]; |
---|
847 | kQ[0][1] = elt[0][1] - fDot * kQ[0][0]; |
---|
848 | kQ[1][1] = elt[1][1] - fDot * kQ[1][0]; |
---|
849 | kQ[2][1] = elt[2][1] - fDot * kQ[2][0]; |
---|
850 | fInvLength = 1.0 / sqrt(kQ[0][1] * kQ[0][1] + kQ[1][1] * kQ[1][1] + |
---|
851 | kQ[2][1] * kQ[2][1]); |
---|
852 | kQ[0][1] *= fInvLength; |
---|
853 | kQ[1][1] *= fInvLength; |
---|
854 | kQ[2][1] *= fInvLength; |
---|
855 | |
---|
856 | fDot = kQ[0][0] * elt[0][2] + kQ[1][0] * elt[1][2] + |
---|
857 | kQ[2][0] * elt[2][2]; |
---|
858 | kQ[0][2] = elt[0][2] - fDot * kQ[0][0]; |
---|
859 | kQ[1][2] = elt[1][2] - fDot * kQ[1][0]; |
---|
860 | kQ[2][2] = elt[2][2] - fDot * kQ[2][0]; |
---|
861 | fDot = kQ[0][1] * elt[0][2] + kQ[1][1] * elt[1][2] + |
---|
862 | kQ[2][1] * elt[2][2]; |
---|
863 | kQ[0][2] -= fDot * kQ[0][1]; |
---|
864 | kQ[1][2] -= fDot * kQ[1][1]; |
---|
865 | kQ[2][2] -= fDot * kQ[2][1]; |
---|
866 | fInvLength = 1.0 / sqrt(kQ[0][2] * kQ[0][2] + kQ[1][2] * kQ[1][2] + |
---|
867 | kQ[2][2] * kQ[2][2]); |
---|
868 | kQ[0][2] *= fInvLength; |
---|
869 | kQ[1][2] *= fInvLength; |
---|
870 | kQ[2][2] *= fInvLength; |
---|
871 | |
---|
872 | // guarantee that orthogonal matrix has determinant 1 (no reflections) |
---|
873 | float fDet = kQ[0][0] * kQ[1][1] * kQ[2][2] + kQ[0][1] * kQ[1][2] * kQ[2][0] + |
---|
874 | kQ[0][2] * kQ[1][0] * kQ[2][1] - kQ[0][2] * kQ[1][1] * kQ[2][0] - |
---|
875 | kQ[0][1] * kQ[1][0] * kQ[2][2] - kQ[0][0] * kQ[1][2] * kQ[2][1]; |
---|
876 | |
---|
877 | if ( fDet < 0.0 ) { |
---|
878 | for (int iRow = 0; iRow < 3; iRow++) |
---|
879 | for (int iCol = 0; iCol < 3; iCol++) |
---|
880 | kQ[iRow][iCol] = -kQ[iRow][iCol]; |
---|
881 | } |
---|
882 | |
---|
883 | // build "right" matrix R |
---|
884 | Matrix3 kR; |
---|
885 | |
---|
886 | kR[0][0] = kQ[0][0] * elt[0][0] + kQ[1][0] * elt[1][0] + |
---|
887 | kQ[2][0] * elt[2][0]; |
---|
888 | |
---|
889 | kR[0][1] = kQ[0][0] * elt[0][1] + kQ[1][0] * elt[1][1] + |
---|
890 | kQ[2][0] * elt[2][1]; |
---|
891 | |
---|
892 | kR[1][1] = kQ[0][1] * elt[0][1] + kQ[1][1] * elt[1][1] + |
---|
893 | kQ[2][1] * elt[2][1]; |
---|
894 | |
---|
895 | kR[0][2] = kQ[0][0] * elt[0][2] + kQ[1][0] * elt[1][2] + |
---|
896 | kQ[2][0] * elt[2][2]; |
---|
897 | |
---|
898 | kR[1][2] = kQ[0][1] * elt[0][2] + kQ[1][1] * elt[1][2] + |
---|
899 | kQ[2][1] * elt[2][2]; |
---|
900 | |
---|
901 | kR[2][2] = kQ[0][2] * elt[0][2] + kQ[1][2] * elt[1][2] + |
---|
902 | kQ[2][2] * elt[2][2]; |
---|
903 | |
---|
904 | // the scaling component |
---|
905 | kD[0] = kR[0][0]; |
---|
906 | |
---|
907 | kD[1] = kR[1][1]; |
---|
908 | |
---|
909 | kD[2] = kR[2][2]; |
---|
910 | |
---|
911 | // the shear component |
---|
912 | float fInvD0 = 1.0 / kD[0]; |
---|
913 | |
---|
914 | kU[0] = kR[0][1] * fInvD0; |
---|
915 | |
---|
916 | kU[1] = kR[0][2] * fInvD0; |
---|
917 | |
---|
918 | kU[2] = kR[1][2] / kD[1]; |
---|
919 | } |
---|
920 | |
---|
921 | //---------------------------------------------------------------------------- |
---|
922 | float Matrix3::maxCubicRoot (float afCoeff[3]) { |
---|
923 | // Spectral norm is for A^T*A, so characteristic polynomial |
---|
924 | // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive float roots. |
---|
925 | // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1]. |
---|
926 | |
---|
927 | // quick out for uniform scale (triple root) |
---|
928 | const float fOneThird = 1.0f / 3.0f; |
---|
929 | const float fEpsilon = 1e-06f; |
---|
930 | float fDiscr = afCoeff[2] * afCoeff[2] - 3.0f * afCoeff[1]; |
---|
931 | |
---|
932 | if ( fDiscr <= fEpsilon ) |
---|
933 | return -fOneThird*afCoeff[2]; |
---|
934 | |
---|
935 | // Compute an upper bound on roots of P(x). This assumes that A^T*A |
---|
936 | // has been scaled by its largest entry. |
---|
937 | float fX = 1.0f; |
---|
938 | |
---|
939 | float fPoly = afCoeff[0] + fX * (afCoeff[1] + fX * (afCoeff[2] + fX)); |
---|
940 | |
---|
941 | if ( fPoly < 0.0f ) { |
---|
942 | // uses a matrix norm to find an upper bound on maximum root |
---|
943 | fX = G3D::abs(afCoeff[0]); |
---|
944 | float fTmp = 1.0 + G3D::abs(afCoeff[1]); |
---|
945 | |
---|
946 | if ( fTmp > fX ) |
---|
947 | fX = fTmp; |
---|
948 | |
---|
949 | fTmp = 1.0 + G3D::abs(afCoeff[2]); |
---|
950 | |
---|
951 | if ( fTmp > fX ) |
---|
952 | fX = fTmp; |
---|
953 | } |
---|
954 | |
---|
955 | // Newton's method to find root |
---|
956 | float fTwoC2 = 2.0f * afCoeff[2]; |
---|
957 | |
---|
958 | for (int i = 0; i < 16; i++) { |
---|
959 | fPoly = afCoeff[0] + fX * (afCoeff[1] + fX * (afCoeff[2] + fX)); |
---|
960 | |
---|
961 | if ( G3D::abs(fPoly) <= fEpsilon ) |
---|
962 | return fX; |
---|
963 | |
---|
964 | float fDeriv = afCoeff[1] + fX * (fTwoC2 + 3.0f * fX); |
---|
965 | |
---|
966 | fX -= fPoly / fDeriv; |
---|
967 | } |
---|
968 | |
---|
969 | return fX; |
---|
970 | } |
---|
971 | |
---|
972 | //---------------------------------------------------------------------------- |
---|
973 | float Matrix3::spectralNorm () const { |
---|
974 | Matrix3 kP; |
---|
975 | int iRow, iCol; |
---|
976 | float fPmax = 0.0; |
---|
977 | |
---|
978 | for (iRow = 0; iRow < 3; iRow++) { |
---|
979 | for (iCol = 0; iCol < 3; iCol++) { |
---|
980 | kP[iRow][iCol] = 0.0; |
---|
981 | |
---|
982 | for (int iMid = 0; iMid < 3; iMid++) { |
---|
983 | kP[iRow][iCol] += |
---|
984 | elt[iMid][iRow] * elt[iMid][iCol]; |
---|
985 | } |
---|
986 | |
---|
987 | if ( kP[iRow][iCol] > fPmax ) |
---|
988 | fPmax = kP[iRow][iCol]; |
---|
989 | } |
---|
990 | } |
---|
991 | |
---|
992 | float fInvPmax = 1.0 / fPmax; |
---|
993 | |
---|
994 | for (iRow = 0; iRow < 3; iRow++) { |
---|
995 | for (iCol = 0; iCol < 3; iCol++) |
---|
996 | kP[iRow][iCol] *= fInvPmax; |
---|
997 | } |
---|
998 | |
---|
999 | float afCoeff[3]; |
---|
1000 | afCoeff[0] = -(kP[0][0] * (kP[1][1] * kP[2][2] - kP[1][2] * kP[2][1]) + |
---|
1001 | kP[0][1] * (kP[2][0] * kP[1][2] - kP[1][0] * kP[2][2]) + |
---|
1002 | kP[0][2] * (kP[1][0] * kP[2][1] - kP[2][0] * kP[1][1])); |
---|
1003 | afCoeff[1] = kP[0][0] * kP[1][1] - kP[0][1] * kP[1][0] + |
---|
1004 | kP[0][0] * kP[2][2] - kP[0][2] * kP[2][0] + |
---|
1005 | kP[1][1] * kP[2][2] - kP[1][2] * kP[2][1]; |
---|
1006 | afCoeff[2] = -(kP[0][0] + kP[1][1] + kP[2][2]); |
---|
1007 | |
---|
1008 | float fRoot = maxCubicRoot(afCoeff); |
---|
1009 | float fNorm = sqrt(fPmax * fRoot); |
---|
1010 | return fNorm; |
---|
1011 | } |
---|
1012 | |
---|
1013 | //---------------------------------------------------------------------------- |
---|
1014 | void Matrix3::toAxisAngle (Vector3& rkAxis, float& rfRadians) const { |
---|
1015 | // Let (x,y,z) be the unit-length axis and let A be an angle of rotation. |
---|
1016 | // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 where |
---|
1017 | // I is the identity and |
---|
1018 | // |
---|
1019 | // +- -+ |
---|
1020 | // P = | 0 -z +y | |
---|
1021 | // | +z 0 -x | |
---|
1022 | // | -y +x 0 | |
---|
1023 | // +- -+ |
---|
1024 | // |
---|
1025 | // If A > 0, R represents a counterclockwise rotation about the axis in |
---|
1026 | // the sense of looking from the tip of the axis vector towards the |
---|
1027 | // origin. Some algebra will show that |
---|
1028 | // |
---|
1029 | // cos(A) = (trace(R)-1)/2 and R - R^t = 2*sin(A)*P |
---|
1030 | // |
---|
1031 | // In the event that A = pi, R-R^t = 0 which prevents us from extracting |
---|
1032 | // the axis through P. Instead note that R = I+2*P^2 when A = pi, so |
---|
1033 | // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and |
---|
1034 | // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi, |
---|
1035 | // it does not matter which sign you choose on the square roots. |
---|
1036 | |
---|
1037 | float fTrace = elt[0][0] + elt[1][1] + elt[2][2]; |
---|
1038 | float fCos = 0.5 * (fTrace - 1.0); |
---|
1039 | rfRadians = G3D::aCos(fCos); // in [0,PI] |
---|
1040 | |
---|
1041 | if ( rfRadians > 0.0 ) { |
---|
1042 | if ( rfRadians < G3D_PI ) { |
---|
1043 | rkAxis.x = elt[2][1] - elt[1][2]; |
---|
1044 | rkAxis.y = elt[0][2] - elt[2][0]; |
---|
1045 | rkAxis.z = elt[1][0] - elt[0][1]; |
---|
1046 | rkAxis.unitize(); |
---|
1047 | } else { |
---|
1048 | // angle is PI |
---|
1049 | float fHalfInverse; |
---|
1050 | |
---|
1051 | if ( elt[0][0] >= elt[1][1] ) { |
---|
1052 | // r00 >= r11 |
---|
1053 | if ( elt[0][0] >= elt[2][2] ) { |
---|
1054 | // r00 is maximum diagonal term |
---|
1055 | rkAxis.x = 0.5 * sqrt(elt[0][0] - |
---|
1056 | elt[1][1] - elt[2][2] + 1.0); |
---|
1057 | fHalfInverse = 0.5 / rkAxis.x; |
---|
1058 | rkAxis.y = fHalfInverse * elt[0][1]; |
---|
1059 | rkAxis.z = fHalfInverse * elt[0][2]; |
---|
1060 | } else { |
---|
1061 | // r22 is maximum diagonal term |
---|
1062 | rkAxis.z = 0.5 * sqrt(elt[2][2] - |
---|
1063 | elt[0][0] - elt[1][1] + 1.0); |
---|
1064 | fHalfInverse = 0.5 / rkAxis.z; |
---|
1065 | rkAxis.x = fHalfInverse * elt[0][2]; |
---|
1066 | rkAxis.y = fHalfInverse * elt[1][2]; |
---|
1067 | } |
---|
1068 | } else { |
---|
1069 | // r11 > r00 |
---|
1070 | if ( elt[1][1] >= elt[2][2] ) { |
---|
1071 | // r11 is maximum diagonal term |
---|
1072 | rkAxis.y = 0.5 * sqrt(elt[1][1] - |
---|
1073 | elt[0][0] - elt[2][2] + 1.0); |
---|
1074 | fHalfInverse = 0.5 / rkAxis.y; |
---|
1075 | rkAxis.x = fHalfInverse * elt[0][1]; |
---|
1076 | rkAxis.z = fHalfInverse * elt[1][2]; |
---|
1077 | } else { |
---|
1078 | // r22 is maximum diagonal term |
---|
1079 | rkAxis.z = 0.5 * sqrt(elt[2][2] - |
---|
1080 | elt[0][0] - elt[1][1] + 1.0); |
---|
1081 | fHalfInverse = 0.5 / rkAxis.z; |
---|
1082 | rkAxis.x = fHalfInverse * elt[0][2]; |
---|
1083 | rkAxis.y = fHalfInverse * elt[1][2]; |
---|
1084 | } |
---|
1085 | } |
---|
1086 | } |
---|
1087 | } else { |
---|
1088 | // The angle is 0 and the matrix is the identity. Any axis will |
---|
1089 | // work, so just use the x-axis. |
---|
1090 | rkAxis.x = 1.0; |
---|
1091 | rkAxis.y = 0.0; |
---|
1092 | rkAxis.z = 0.0; |
---|
1093 | } |
---|
1094 | } |
---|
1095 | |
---|
1096 | //---------------------------------------------------------------------------- |
---|
1097 | Matrix3 Matrix3::fromAxisAngle (const Vector3& rkAxis, float fRadians) { |
---|
1098 | Matrix3 m; |
---|
1099 | |
---|
1100 | float fCos = cos(fRadians); |
---|
1101 | float fSin = sin(fRadians); |
---|
1102 | float fOneMinusCos = 1.0 - fCos; |
---|
1103 | float fX2 = rkAxis.x * rkAxis.x; |
---|
1104 | float fY2 = rkAxis.y * rkAxis.y; |
---|
1105 | float fZ2 = rkAxis.z * rkAxis.z; |
---|
1106 | float fXYM = rkAxis.x * rkAxis.y * fOneMinusCos; |
---|
1107 | float fXZM = rkAxis.x * rkAxis.z * fOneMinusCos; |
---|
1108 | float fYZM = rkAxis.y * rkAxis.z * fOneMinusCos; |
---|
1109 | float fXSin = rkAxis.x * fSin; |
---|
1110 | float fYSin = rkAxis.y * fSin; |
---|
1111 | float fZSin = rkAxis.z * fSin; |
---|
1112 | |
---|
1113 | m.elt[0][0] = fX2 * fOneMinusCos + fCos; |
---|
1114 | m.elt[0][1] = fXYM - fZSin; |
---|
1115 | m.elt[0][2] = fXZM + fYSin; |
---|
1116 | m.elt[1][0] = fXYM + fZSin; |
---|
1117 | m.elt[1][1] = fY2 * fOneMinusCos + fCos; |
---|
1118 | m.elt[1][2] = fYZM - fXSin; |
---|
1119 | m.elt[2][0] = fXZM - fYSin; |
---|
1120 | m.elt[2][1] = fYZM + fXSin; |
---|
1121 | m.elt[2][2] = fZ2 * fOneMinusCos + fCos; |
---|
1122 | |
---|
1123 | return m; |
---|
1124 | } |
---|
1125 | |
---|
1126 | //---------------------------------------------------------------------------- |
---|
1127 | bool Matrix3::toEulerAnglesXYZ (float& rfXAngle, float& rfYAngle, |
---|
1128 | float& rfZAngle) const { |
---|
1129 | // rot = cy*cz -cy*sz sy |
---|
1130 | // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
---|
1131 | // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
---|
1132 | |
---|
1133 | if ( elt[0][2] < 1.0f ) { |
---|
1134 | if ( elt[0][2] > -1.0f ) { |
---|
1135 | rfXAngle = G3D::aTan2( -elt[1][2], elt[2][2]); |
---|
1136 | rfYAngle = (float) G3D::aSin(elt[0][2]); |
---|
1137 | rfZAngle = G3D::aTan2( -elt[0][1], elt[0][0]); |
---|
1138 | return true; |
---|
1139 | } else { |
---|
1140 | // WARNING. Not unique. XA - ZA = -atan2(r10,r11) |
---|
1141 | rfXAngle = -G3D::aTan2(elt[1][0], elt[1][1]); |
---|
1142 | rfYAngle = -(float)G3D_HALF_PI; |
---|
1143 | rfZAngle = 0.0f; |
---|
1144 | return false; |
---|
1145 | } |
---|
1146 | } else { |
---|
1147 | // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11) |
---|
1148 | rfXAngle = G3D::aTan2(elt[1][0], elt[1][1]); |
---|
1149 | rfYAngle = (float)G3D_HALF_PI; |
---|
1150 | rfZAngle = 0.0f; |
---|
1151 | return false; |
---|
1152 | } |
---|
1153 | } |
---|
1154 | |
---|
1155 | //---------------------------------------------------------------------------- |
---|
1156 | bool Matrix3::toEulerAnglesXZY (float& rfXAngle, float& rfZAngle, |
---|
1157 | float& rfYAngle) const { |
---|
1158 | // rot = cy*cz -sz cz*sy |
---|
1159 | // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz |
---|
1160 | // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz |
---|
1161 | |
---|
1162 | if ( elt[0][1] < 1.0f ) { |
---|
1163 | if ( elt[0][1] > -1.0f ) { |
---|
1164 | rfXAngle = G3D::aTan2(elt[2][1], elt[1][1]); |
---|
1165 | rfZAngle = (float) asin( -elt[0][1]); |
---|
1166 | rfYAngle = G3D::aTan2(elt[0][2], elt[0][0]); |
---|
1167 | return true; |
---|
1168 | } else { |
---|
1169 | // WARNING. Not unique. XA - YA = atan2(r20,r22) |
---|
1170 | rfXAngle = G3D::aTan2(elt[2][0], elt[2][2]); |
---|
1171 | rfZAngle = (float)G3D_HALF_PI; |
---|
1172 | rfYAngle = 0.0; |
---|
1173 | return false; |
---|
1174 | } |
---|
1175 | } else { |
---|
1176 | // WARNING. Not unique. XA + YA = atan2(-r20,r22) |
---|
1177 | rfXAngle = G3D::aTan2( -elt[2][0], elt[2][2]); |
---|
1178 | rfZAngle = -(float)G3D_HALF_PI; |
---|
1179 | rfYAngle = 0.0f; |
---|
1180 | return false; |
---|
1181 | } |
---|
1182 | } |
---|
1183 | |
---|
1184 | //---------------------------------------------------------------------------- |
---|
1185 | bool Matrix3::toEulerAnglesYXZ (float& rfYAngle, float& rfXAngle, |
---|
1186 | float& rfZAngle) const { |
---|
1187 | // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy |
---|
1188 | // cx*sz cx*cz -sx |
---|
1189 | // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy |
---|
1190 | |
---|
1191 | if ( elt[1][2] < 1.0 ) { |
---|
1192 | if ( elt[1][2] > -1.0 ) { |
---|
1193 | rfYAngle = G3D::aTan2(elt[0][2], elt[2][2]); |
---|
1194 | rfXAngle = (float) asin( -elt[1][2]); |
---|
1195 | rfZAngle = G3D::aTan2(elt[1][0], elt[1][1]); |
---|
1196 | return true; |
---|
1197 | } else { |
---|
1198 | // WARNING. Not unique. YA - ZA = atan2(r01,r00) |
---|
1199 | rfYAngle = G3D::aTan2(elt[0][1], elt[0][0]); |
---|
1200 | rfXAngle = (float)G3D_HALF_PI; |
---|
1201 | rfZAngle = 0.0; |
---|
1202 | return false; |
---|
1203 | } |
---|
1204 | } else { |
---|
1205 | // WARNING. Not unique. YA + ZA = atan2(-r01,r00) |
---|
1206 | rfYAngle = G3D::aTan2( -elt[0][1], elt[0][0]); |
---|
1207 | rfXAngle = -(float)G3D_HALF_PI; |
---|
1208 | rfZAngle = 0.0f; |
---|
1209 | return false; |
---|
1210 | } |
---|
1211 | } |
---|
1212 | |
---|
1213 | //---------------------------------------------------------------------------- |
---|
1214 | bool Matrix3::toEulerAnglesYZX (float& rfYAngle, float& rfZAngle, |
---|
1215 | float& rfXAngle) const { |
---|
1216 | // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz |
---|
1217 | // sz cx*cz -cz*sx |
---|
1218 | // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz |
---|
1219 | |
---|
1220 | if ( elt[1][0] < 1.0 ) { |
---|
1221 | if ( elt[1][0] > -1.0 ) { |
---|
1222 | rfYAngle = G3D::aTan2( -elt[2][0], elt[0][0]); |
---|
1223 | rfZAngle = (float) asin(elt[1][0]); |
---|
1224 | rfXAngle = G3D::aTan2( -elt[1][2], elt[1][1]); |
---|
1225 | return true; |
---|
1226 | } else { |
---|
1227 | // WARNING. Not unique. YA - XA = -atan2(r21,r22); |
---|
1228 | rfYAngle = -G3D::aTan2(elt[2][1], elt[2][2]); |
---|
1229 | rfZAngle = -(float)G3D_HALF_PI; |
---|
1230 | rfXAngle = 0.0; |
---|
1231 | return false; |
---|
1232 | } |
---|
1233 | } else { |
---|
1234 | // WARNING. Not unique. YA + XA = atan2(r21,r22) |
---|
1235 | rfYAngle = G3D::aTan2(elt[2][1], elt[2][2]); |
---|
1236 | rfZAngle = (float)G3D_HALF_PI; |
---|
1237 | rfXAngle = 0.0f; |
---|
1238 | return false; |
---|
1239 | } |
---|
1240 | } |
---|
1241 | |
---|
1242 | //---------------------------------------------------------------------------- |
---|
1243 | bool Matrix3::toEulerAnglesZXY (float& rfZAngle, float& rfXAngle, |
---|
1244 | float& rfYAngle) const { |
---|
1245 | // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz |
---|
1246 | // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz |
---|
1247 | // -cx*sy sx cx*cy |
---|
1248 | |
---|
1249 | if ( elt[2][1] < 1.0 ) { |
---|
1250 | if ( elt[2][1] > -1.0 ) { |
---|
1251 | rfZAngle = G3D::aTan2( -elt[0][1], elt[1][1]); |
---|
1252 | rfXAngle = (float) asin(elt[2][1]); |
---|
1253 | rfYAngle = G3D::aTan2( -elt[2][0], elt[2][2]); |
---|
1254 | return true; |
---|
1255 | } else { |
---|
1256 | // WARNING. Not unique. ZA - YA = -atan(r02,r00) |
---|
1257 | rfZAngle = -G3D::aTan2(elt[0][2], elt[0][0]); |
---|
1258 | rfXAngle = -(float)G3D_HALF_PI; |
---|
1259 | rfYAngle = 0.0f; |
---|
1260 | return false; |
---|
1261 | } |
---|
1262 | } else { |
---|
1263 | // WARNING. Not unique. ZA + YA = atan2(r02,r00) |
---|
1264 | rfZAngle = G3D::aTan2(elt[0][2], elt[0][0]); |
---|
1265 | rfXAngle = (float)G3D_HALF_PI; |
---|
1266 | rfYAngle = 0.0f; |
---|
1267 | return false; |
---|
1268 | } |
---|
1269 | } |
---|
1270 | |
---|
1271 | //---------------------------------------------------------------------------- |
---|
1272 | bool Matrix3::toEulerAnglesZYX (float& rfZAngle, float& rfYAngle, |
---|
1273 | float& rfXAngle) const { |
---|
1274 | // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz |
---|
1275 | // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz |
---|
1276 | // -sy cy*sx cx*cy |
---|
1277 | |
---|
1278 | if ( elt[2][0] < 1.0 ) { |
---|
1279 | if ( elt[2][0] > -1.0 ) { |
---|
1280 | rfZAngle = atan2f(elt[1][0], elt[0][0]); |
---|
1281 | rfYAngle = asinf(-(double)elt[2][1]); |
---|
1282 | rfXAngle = atan2f(elt[2][1], elt[2][2]); |
---|
1283 | return true; |
---|
1284 | } else { |
---|
1285 | // WARNING. Not unique. ZA - XA = -atan2(r01,r02) |
---|
1286 | rfZAngle = -G3D::aTan2(elt[0][1], elt[0][2]); |
---|
1287 | rfYAngle = (float)G3D_HALF_PI; |
---|
1288 | rfXAngle = 0.0f; |
---|
1289 | return false; |
---|
1290 | } |
---|
1291 | } else { |
---|
1292 | // WARNING. Not unique. ZA + XA = atan2(-r01,-r02) |
---|
1293 | rfZAngle = G3D::aTan2( -elt[0][1], -elt[0][2]); |
---|
1294 | rfYAngle = -(float)G3D_HALF_PI; |
---|
1295 | rfXAngle = 0.0f; |
---|
1296 | return false; |
---|
1297 | } |
---|
1298 | } |
---|
1299 | |
---|
1300 | //---------------------------------------------------------------------------- |
---|
1301 | Matrix3 Matrix3::fromEulerAnglesXYZ (float fYAngle, float fPAngle, |
---|
1302 | float fRAngle) { |
---|
1303 | float fCos, fSin; |
---|
1304 | |
---|
1305 | fCos = cosf(fYAngle); |
---|
1306 | fSin = sinf(fYAngle); |
---|
1307 | Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0, fSin, fCos); |
---|
1308 | |
---|
1309 | fCos = cosf(fPAngle); |
---|
1310 | fSin = sinf(fPAngle); |
---|
1311 | Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos); |
---|
1312 | |
---|
1313 | fCos = cosf(fRAngle); |
---|
1314 | fSin = sinf(fRAngle); |
---|
1315 | Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f); |
---|
1316 | |
---|
1317 | return kXMat * (kYMat * kZMat); |
---|
1318 | } |
---|
1319 | |
---|
1320 | //---------------------------------------------------------------------------- |
---|
1321 | Matrix3 Matrix3::fromEulerAnglesXZY (float fYAngle, float fPAngle, |
---|
1322 | float fRAngle) { |
---|
1323 | |
---|
1324 | float fCos, fSin; |
---|
1325 | |
---|
1326 | fCos = cosf(fYAngle); |
---|
1327 | fSin = sinf(fYAngle); |
---|
1328 | Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos); |
---|
1329 | |
---|
1330 | fCos = cosf(fPAngle); |
---|
1331 | fSin = sinf(fPAngle); |
---|
1332 | Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0); |
---|
1333 | |
---|
1334 | fCos = cosf(fRAngle); |
---|
1335 | fSin = sinf(fRAngle); |
---|
1336 | Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos); |
---|
1337 | |
---|
1338 | return kXMat * (kZMat * kYMat); |
---|
1339 | } |
---|
1340 | |
---|
1341 | //---------------------------------------------------------------------------- |
---|
1342 | Matrix3 Matrix3::fromEulerAnglesYXZ( |
---|
1343 | float fYAngle, |
---|
1344 | float fPAngle, |
---|
1345 | float fRAngle) { |
---|
1346 | |
---|
1347 | float fCos, fSin; |
---|
1348 | |
---|
1349 | fCos = cos(fYAngle); |
---|
1350 | fSin = sin(fYAngle); |
---|
1351 | Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos); |
---|
1352 | |
---|
1353 | fCos = cos(fPAngle); |
---|
1354 | fSin = sin(fPAngle); |
---|
1355 | Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos); |
---|
1356 | |
---|
1357 | fCos = cos(fRAngle); |
---|
1358 | fSin = sin(fRAngle); |
---|
1359 | Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f); |
---|
1360 | |
---|
1361 | return kYMat * (kXMat * kZMat); |
---|
1362 | } |
---|
1363 | |
---|
1364 | //---------------------------------------------------------------------------- |
---|
1365 | Matrix3 Matrix3::fromEulerAnglesYZX( |
---|
1366 | float fYAngle, |
---|
1367 | float fPAngle, |
---|
1368 | float fRAngle) { |
---|
1369 | |
---|
1370 | float fCos, fSin; |
---|
1371 | |
---|
1372 | fCos = cos(fYAngle); |
---|
1373 | fSin = sin(fYAngle); |
---|
1374 | Matrix3 kYMat(fCos, 0.0f, fSin, 0.0f, 1.0f, 0.0f, -fSin, 0.0f, fCos); |
---|
1375 | |
---|
1376 | fCos = cos(fPAngle); |
---|
1377 | fSin = sin(fPAngle); |
---|
1378 | Matrix3 kZMat(fCos, -fSin, 0.0f, fSin, fCos, 0.0f, 0.0f, 0.0f, 1.0f); |
---|
1379 | |
---|
1380 | fCos = cos(fRAngle); |
---|
1381 | fSin = sin(fRAngle); |
---|
1382 | Matrix3 kXMat(1.0f, 0.0f, 0.0f, 0.0f, fCos, -fSin, 0.0f, fSin, fCos); |
---|
1383 | |
---|
1384 | return kYMat * (kZMat * kXMat); |
---|
1385 | } |
---|
1386 | |
---|
1387 | //---------------------------------------------------------------------------- |
---|
1388 | Matrix3 Matrix3::fromEulerAnglesZXY (float fYAngle, float fPAngle, |
---|
1389 | float fRAngle) { |
---|
1390 | float fCos, fSin; |
---|
1391 | |
---|
1392 | fCos = cos(fYAngle); |
---|
1393 | fSin = sin(fYAngle); |
---|
1394 | Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0); |
---|
1395 | |
---|
1396 | fCos = cos(fPAngle); |
---|
1397 | fSin = sin(fPAngle); |
---|
1398 | Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos); |
---|
1399 | |
---|
1400 | fCos = cos(fRAngle); |
---|
1401 | fSin = sin(fRAngle); |
---|
1402 | Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos); |
---|
1403 | |
---|
1404 | return kZMat * (kXMat * kYMat); |
---|
1405 | } |
---|
1406 | |
---|
1407 | //---------------------------------------------------------------------------- |
---|
1408 | Matrix3 Matrix3::fromEulerAnglesZYX (float fYAngle, float fPAngle, |
---|
1409 | float fRAngle) { |
---|
1410 | float fCos, fSin; |
---|
1411 | |
---|
1412 | fCos = cos(fYAngle); |
---|
1413 | fSin = sin(fYAngle); |
---|
1414 | Matrix3 kZMat(fCos, -fSin, 0.0, fSin, fCos, 0.0, 0.0, 0.0, 1.0); |
---|
1415 | |
---|
1416 | fCos = cos(fPAngle); |
---|
1417 | fSin = sin(fPAngle); |
---|
1418 | Matrix3 kYMat(fCos, 0.0, fSin, 0.0, 1.0, 0.0, -fSin, 0.0, fCos); |
---|
1419 | |
---|
1420 | fCos = cos(fRAngle); |
---|
1421 | fSin = sin(fRAngle); |
---|
1422 | Matrix3 kXMat(1.0, 0.0, 0.0, 0.0, fCos, -fSin, 0.0, fSin, fCos); |
---|
1423 | |
---|
1424 | return kZMat * (kYMat * kXMat); |
---|
1425 | } |
---|
1426 | |
---|
1427 | //---------------------------------------------------------------------------- |
---|
1428 | void Matrix3::tridiagonal (float afDiag[3], float afSubDiag[3]) { |
---|
1429 | // Householder reduction T = Q^t M Q |
---|
1430 | // Input: |
---|
1431 | // mat, symmetric 3x3 matrix M |
---|
1432 | // Output: |
---|
1433 | // mat, orthogonal matrix Q |
---|
1434 | // diag, diagonal entries of T |
---|
1435 | // subd, subdiagonal entries of T (T is symmetric) |
---|
1436 | |
---|
1437 | float fA = elt[0][0]; |
---|
1438 | float fB = elt[0][1]; |
---|
1439 | float fC = elt[0][2]; |
---|
1440 | float fD = elt[1][1]; |
---|
1441 | float fE = elt[1][2]; |
---|
1442 | float fF = elt[2][2]; |
---|
1443 | |
---|
1444 | afDiag[0] = fA; |
---|
1445 | afSubDiag[2] = 0.0; |
---|
1446 | |
---|
1447 | if ( G3D::abs(fC) >= EPSILON ) { |
---|
1448 | float fLength = sqrt(fB * fB + fC * fC); |
---|
1449 | float fInvLength = 1.0 / fLength; |
---|
1450 | fB *= fInvLength; |
---|
1451 | fC *= fInvLength; |
---|
1452 | float fQ = 2.0 * fB * fE + fC * (fF - fD); |
---|
1453 | afDiag[1] = fD + fC * fQ; |
---|
1454 | afDiag[2] = fF - fC * fQ; |
---|
1455 | afSubDiag[0] = fLength; |
---|
1456 | afSubDiag[1] = fE - fB * fQ; |
---|
1457 | elt[0][0] = 1.0; |
---|
1458 | elt[0][1] = 0.0; |
---|
1459 | elt[0][2] = 0.0; |
---|
1460 | elt[1][0] = 0.0; |
---|
1461 | elt[1][1] = fB; |
---|
1462 | elt[1][2] = fC; |
---|
1463 | elt[2][0] = 0.0; |
---|
1464 | elt[2][1] = fC; |
---|
1465 | elt[2][2] = -fB; |
---|
1466 | } else { |
---|
1467 | afDiag[1] = fD; |
---|
1468 | afDiag[2] = fF; |
---|
1469 | afSubDiag[0] = fB; |
---|
1470 | afSubDiag[1] = fE; |
---|
1471 | elt[0][0] = 1.0; |
---|
1472 | elt[0][1] = 0.0; |
---|
1473 | elt[0][2] = 0.0; |
---|
1474 | elt[1][0] = 0.0; |
---|
1475 | elt[1][1] = 1.0; |
---|
1476 | elt[1][2] = 0.0; |
---|
1477 | elt[2][0] = 0.0; |
---|
1478 | elt[2][1] = 0.0; |
---|
1479 | elt[2][2] = 1.0; |
---|
1480 | } |
---|
1481 | } |
---|
1482 | |
---|
1483 | //---------------------------------------------------------------------------- |
---|
1484 | bool Matrix3::qLAlgorithm (float afDiag[3], float afSubDiag[3]) { |
---|
1485 | // QL iteration with implicit shifting to reduce matrix from tridiagonal |
---|
1486 | // to diagonal |
---|
1487 | |
---|
1488 | for (int i0 = 0; i0 < 3; i0++) { |
---|
1489 | const int iMaxIter = 32; |
---|
1490 | int iIter; |
---|
1491 | |
---|
1492 | for (iIter = 0; iIter < iMaxIter; iIter++) { |
---|
1493 | int i1; |
---|
1494 | |
---|
1495 | for (i1 = i0; i1 <= 1; i1++) { |
---|
1496 | float fSum = G3D::abs(afDiag[i1]) + |
---|
1497 | G3D::abs(afDiag[i1 + 1]); |
---|
1498 | |
---|
1499 | if ( G3D::abs(afSubDiag[i1]) + fSum == fSum ) |
---|
1500 | break; |
---|
1501 | } |
---|
1502 | |
---|
1503 | if ( i1 == i0 ) |
---|
1504 | break; |
---|
1505 | |
---|
1506 | float fTmp0 = (afDiag[i0 + 1] - afDiag[i0]) / (2.0 * afSubDiag[i0]); |
---|
1507 | |
---|
1508 | float fTmp1 = sqrt(fTmp0 * fTmp0 + 1.0); |
---|
1509 | |
---|
1510 | if ( fTmp0 < 0.0 ) |
---|
1511 | fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 - fTmp1); |
---|
1512 | else |
---|
1513 | fTmp0 = afDiag[i1] - afDiag[i0] + afSubDiag[i0] / (fTmp0 + fTmp1); |
---|
1514 | |
---|
1515 | float fSin = 1.0; |
---|
1516 | |
---|
1517 | float fCos = 1.0; |
---|
1518 | |
---|
1519 | float fTmp2 = 0.0; |
---|
1520 | |
---|
1521 | for (int i2 = i1 - 1; i2 >= i0; i2--) { |
---|
1522 | float fTmp3 = fSin * afSubDiag[i2]; |
---|
1523 | float fTmp4 = fCos * afSubDiag[i2]; |
---|
1524 | |
---|
1525 | if (G3D::abs(fTmp3) >= G3D::abs(fTmp0)) { |
---|
1526 | fCos = fTmp0 / fTmp3; |
---|
1527 | fTmp1 = sqrt(fCos * fCos + 1.0); |
---|
1528 | afSubDiag[i2 + 1] = fTmp3 * fTmp1; |
---|
1529 | fSin = 1.0 / fTmp1; |
---|
1530 | fCos *= fSin; |
---|
1531 | } else { |
---|
1532 | fSin = fTmp3 / fTmp0; |
---|
1533 | fTmp1 = sqrt(fSin * fSin + 1.0); |
---|
1534 | afSubDiag[i2 + 1] = fTmp0 * fTmp1; |
---|
1535 | fCos = 1.0 / fTmp1; |
---|
1536 | fSin *= fCos; |
---|
1537 | } |
---|
1538 | |
---|
1539 | fTmp0 = afDiag[i2 + 1] - fTmp2; |
---|
1540 | fTmp1 = (afDiag[i2] - fTmp0) * fSin + 2.0 * fTmp4 * fCos; |
---|
1541 | fTmp2 = fSin * fTmp1; |
---|
1542 | afDiag[i2 + 1] = fTmp0 + fTmp2; |
---|
1543 | fTmp0 = fCos * fTmp1 - fTmp4; |
---|
1544 | |
---|
1545 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
1546 | fTmp3 = elt[iRow][i2 + 1]; |
---|
1547 | elt[iRow][i2 + 1] = fSin * elt[iRow][i2] + |
---|
1548 | fCos * fTmp3; |
---|
1549 | elt[iRow][i2] = fCos * elt[iRow][i2] - |
---|
1550 | fSin * fTmp3; |
---|
1551 | } |
---|
1552 | } |
---|
1553 | |
---|
1554 | afDiag[i0] -= fTmp2; |
---|
1555 | afSubDiag[i0] = fTmp0; |
---|
1556 | afSubDiag[i1] = 0.0; |
---|
1557 | } |
---|
1558 | |
---|
1559 | if ( iIter == iMaxIter ) { |
---|
1560 | // should not get here under normal circumstances |
---|
1561 | return false; |
---|
1562 | } |
---|
1563 | } |
---|
1564 | |
---|
1565 | return true; |
---|
1566 | } |
---|
1567 | |
---|
1568 | //---------------------------------------------------------------------------- |
---|
1569 | void Matrix3::eigenSolveSymmetric (float afEigenvalue[3], |
---|
1570 | Vector3 akEigenvector[3]) const { |
---|
1571 | Matrix3 kMatrix = *this; |
---|
1572 | float afSubDiag[3]; |
---|
1573 | kMatrix.tridiagonal(afEigenvalue, afSubDiag); |
---|
1574 | kMatrix.qLAlgorithm(afEigenvalue, afSubDiag); |
---|
1575 | |
---|
1576 | for (int i = 0; i < 3; i++) { |
---|
1577 | akEigenvector[i][0] = kMatrix[0][i]; |
---|
1578 | akEigenvector[i][1] = kMatrix[1][i]; |
---|
1579 | akEigenvector[i][2] = kMatrix[2][i]; |
---|
1580 | } |
---|
1581 | |
---|
1582 | // make eigenvectors form a right--handed system |
---|
1583 | Vector3 kCross = akEigenvector[1].cross(akEigenvector[2]); |
---|
1584 | |
---|
1585 | float fDet = akEigenvector[0].dot(kCross); |
---|
1586 | |
---|
1587 | if ( fDet < 0.0 ) { |
---|
1588 | akEigenvector[2][0] = - akEigenvector[2][0]; |
---|
1589 | akEigenvector[2][1] = - akEigenvector[2][1]; |
---|
1590 | akEigenvector[2][2] = - akEigenvector[2][2]; |
---|
1591 | } |
---|
1592 | } |
---|
1593 | |
---|
1594 | //---------------------------------------------------------------------------- |
---|
1595 | void Matrix3::tensorProduct (const Vector3& rkU, const Vector3& rkV, |
---|
1596 | Matrix3& rkProduct) { |
---|
1597 | for (int iRow = 0; iRow < 3; iRow++) { |
---|
1598 | for (int iCol = 0; iCol < 3; iCol++) { |
---|
1599 | rkProduct[iRow][iCol] = rkU[iRow] * rkV[iCol]; |
---|
1600 | } |
---|
1601 | } |
---|
1602 | } |
---|
1603 | |
---|
1604 | //---------------------------------------------------------------------------- |
---|
1605 | |
---|
1606 | // Runs in 52 cycles on AMD, 76 cycles on Intel Centrino |
---|
1607 | // |
---|
1608 | // The loop unrolling is necessary for performance. |
---|
1609 | // I was unable to improve performance further by flattening the matrices |
---|
1610 | // into float*'s instead of 2D arrays. |
---|
1611 | // |
---|
1612 | // -morgan |
---|
1613 | void Matrix3::_mul(const Matrix3& A, const Matrix3& B, Matrix3& out) { |
---|
1614 | const float* ARowPtr = A.elt[0]; |
---|
1615 | float* outRowPtr = out.elt[0]; |
---|
1616 | outRowPtr[0] = |
---|
1617 | ARowPtr[0] * B.elt[0][0] + |
---|
1618 | ARowPtr[1] * B.elt[1][0] + |
---|
1619 | ARowPtr[2] * B.elt[2][0]; |
---|
1620 | outRowPtr[1] = |
---|
1621 | ARowPtr[0] * B.elt[0][1] + |
---|
1622 | ARowPtr[1] * B.elt[1][1] + |
---|
1623 | ARowPtr[2] * B.elt[2][1]; |
---|
1624 | outRowPtr[2] = |
---|
1625 | ARowPtr[0] * B.elt[0][2] + |
---|
1626 | ARowPtr[1] * B.elt[1][2] + |
---|
1627 | ARowPtr[2] * B.elt[2][2]; |
---|
1628 | |
---|
1629 | ARowPtr = A.elt[1]; |
---|
1630 | outRowPtr = out.elt[1]; |
---|
1631 | |
---|
1632 | outRowPtr[0] = |
---|
1633 | ARowPtr[0] * B.elt[0][0] + |
---|
1634 | ARowPtr[1] * B.elt[1][0] + |
---|
1635 | ARowPtr[2] * B.elt[2][0]; |
---|
1636 | outRowPtr[1] = |
---|
1637 | ARowPtr[0] * B.elt[0][1] + |
---|
1638 | ARowPtr[1] * B.elt[1][1] + |
---|
1639 | ARowPtr[2] * B.elt[2][1]; |
---|
1640 | outRowPtr[2] = |
---|
1641 | ARowPtr[0] * B.elt[0][2] + |
---|
1642 | ARowPtr[1] * B.elt[1][2] + |
---|
1643 | ARowPtr[2] * B.elt[2][2]; |
---|
1644 | |
---|
1645 | ARowPtr = A.elt[2]; |
---|
1646 | outRowPtr = out.elt[2]; |
---|
1647 | |
---|
1648 | outRowPtr[0] = |
---|
1649 | ARowPtr[0] * B.elt[0][0] + |
---|
1650 | ARowPtr[1] * B.elt[1][0] + |
---|
1651 | ARowPtr[2] * B.elt[2][0]; |
---|
1652 | outRowPtr[1] = |
---|
1653 | ARowPtr[0] * B.elt[0][1] + |
---|
1654 | ARowPtr[1] * B.elt[1][1] + |
---|
1655 | ARowPtr[2] * B.elt[2][1]; |
---|
1656 | outRowPtr[2] = |
---|
1657 | ARowPtr[0] * B.elt[0][2] + |
---|
1658 | ARowPtr[1] * B.elt[1][2] + |
---|
1659 | ARowPtr[2] * B.elt[2][2]; |
---|
1660 | } |
---|
1661 | |
---|
1662 | //---------------------------------------------------------------------------- |
---|
1663 | void Matrix3::_transpose(const Matrix3& A, Matrix3& out) { |
---|
1664 | out[0][0] = A.elt[0][0]; |
---|
1665 | out[0][1] = A.elt[1][0]; |
---|
1666 | out[0][2] = A.elt[2][0]; |
---|
1667 | out[1][0] = A.elt[0][1]; |
---|
1668 | out[1][1] = A.elt[1][1]; |
---|
1669 | out[1][2] = A.elt[2][1]; |
---|
1670 | out[2][0] = A.elt[0][2]; |
---|
1671 | out[2][1] = A.elt[1][2]; |
---|
1672 | out[2][2] = A.elt[2][2]; |
---|
1673 | } |
---|
1674 | |
---|
1675 | //----------------------------------------------------------------------------- |
---|
1676 | std::string Matrix3::toString() const { |
---|
1677 | return G3D::format("[%g, %g, %g; %g, %g, %g; %g, %g, %g]", |
---|
1678 | elt[0][0], elt[0][1], elt[0][2], |
---|
1679 | elt[1][0], elt[1][1], elt[1][2], |
---|
1680 | elt[2][0], elt[2][1], elt[2][2]); |
---|
1681 | } |
---|
1682 | |
---|
1683 | |
---|
1684 | |
---|
1685 | } // namespace |
---|
1686 | |
---|