1 | /** |
---|
2 | @file Vector3.cpp |
---|
3 | |
---|
4 | 3D vector class |
---|
5 | |
---|
6 | @maintainer Morgan McGuire, matrix@graphics3d.com |
---|
7 | |
---|
8 | @cite Portions based on Dave Eberly's Magic Software Library at http://www.magic-software.com |
---|
9 | |
---|
10 | @created 2001-06-02 |
---|
11 | @edited 2006-01-30 |
---|
12 | */ |
---|
13 | |
---|
14 | #include <limits> |
---|
15 | #include <stdlib.h> |
---|
16 | #include "G3D/Vector3.h" |
---|
17 | #include "G3D/g3dmath.h" |
---|
18 | #include "G3D/format.h" |
---|
19 | #include "G3D/stringutils.h" |
---|
20 | #include "G3D/Vector3int16.h" |
---|
21 | #include "G3D/Matrix3.h" |
---|
22 | #include "G3D/Vector2.h" |
---|
23 | |
---|
24 | namespace G3D { |
---|
25 | |
---|
26 | Vector3 Vector3::dummy; |
---|
27 | |
---|
28 | // Deprecated. |
---|
29 | const Vector3 Vector3::ZERO(0, 0, 0); |
---|
30 | const Vector3 Vector3::ZERO3(0, 0, 0); |
---|
31 | const Vector3 Vector3::UNIT_X(1, 0, 0); |
---|
32 | const Vector3 Vector3::UNIT_Y(0, 1, 0); |
---|
33 | const Vector3 Vector3::UNIT_Z(0, 0, 1); |
---|
34 | const Vector3 Vector3::INF3((float)G3D::inf(), (float)G3D::inf(), (float)G3D::inf()); |
---|
35 | const Vector3 Vector3::NAN3((float)G3D::nan(), (float)G3D::nan(), (float)G3D::nan()); |
---|
36 | |
---|
37 | Vector3::Vector3(const class Vector2& v, float _z) : x(v.x), y(v.y), z(_z) { |
---|
38 | } |
---|
39 | |
---|
40 | Vector3::Axis Vector3::primaryAxis() const { |
---|
41 | |
---|
42 | Axis a = X_AXIS; |
---|
43 | |
---|
44 | double nx = abs(x); |
---|
45 | double ny = abs(y); |
---|
46 | double nz = abs(z); |
---|
47 | |
---|
48 | if (nx > ny) { |
---|
49 | if (nx > nz) { |
---|
50 | a = X_AXIS; |
---|
51 | } else { |
---|
52 | a = Z_AXIS; |
---|
53 | } |
---|
54 | } else { |
---|
55 | if (ny > nz) { |
---|
56 | a = Y_AXIS; |
---|
57 | } else { |
---|
58 | a = Z_AXIS; |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | return a; |
---|
63 | } |
---|
64 | |
---|
65 | |
---|
66 | unsigned int Vector3::hashCode() const { |
---|
67 | unsigned int xhash = (*(int*)(void*)(&x)); |
---|
68 | unsigned int yhash = (*(int*)(void*)(&y)); |
---|
69 | unsigned int zhash = (*(int*)(void*)(&z)); |
---|
70 | |
---|
71 | return xhash + (yhash * 37) + (zhash * 101); |
---|
72 | } |
---|
73 | |
---|
74 | std::ostream& operator<<(std::ostream& os, const Vector3& v) { |
---|
75 | return os << v.toString(); |
---|
76 | } |
---|
77 | |
---|
78 | |
---|
79 | //---------------------------------------------------------------------------- |
---|
80 | |
---|
81 | double frand() { |
---|
82 | return rand() / (double) RAND_MAX; |
---|
83 | } |
---|
84 | |
---|
85 | |
---|
86 | Vector3::Vector3(const class Vector3int16& v) { |
---|
87 | x = v.x; |
---|
88 | y = v.y; |
---|
89 | z = v.z; |
---|
90 | } |
---|
91 | |
---|
92 | |
---|
93 | Vector3 Vector3::random() { |
---|
94 | Vector3 result; |
---|
95 | |
---|
96 | do { |
---|
97 | result = Vector3(uniformRandom(-1.0, 1.0), |
---|
98 | uniformRandom(-1.0, 1.0), |
---|
99 | uniformRandom(-1.0, 1.0)); |
---|
100 | } while (result.squaredMagnitude() >= 1.0f); |
---|
101 | |
---|
102 | result.unitize(); |
---|
103 | |
---|
104 | return result; |
---|
105 | } |
---|
106 | |
---|
107 | //---------------------------------------------------------------------------- |
---|
108 | Vector3 Vector3::operator/ (float fScalar) const { |
---|
109 | Vector3 kQuot; |
---|
110 | |
---|
111 | if ( fScalar != 0.0 ) { |
---|
112 | float fInvScalar = 1.0f / fScalar; |
---|
113 | kQuot.x = fInvScalar * x; |
---|
114 | kQuot.y = fInvScalar * y; |
---|
115 | kQuot.z = fInvScalar * z; |
---|
116 | return kQuot; |
---|
117 | } else { |
---|
118 | return Vector3::inf(); |
---|
119 | } |
---|
120 | } |
---|
121 | |
---|
122 | //---------------------------------------------------------------------------- |
---|
123 | Vector3& Vector3::operator/= (float fScalar) { |
---|
124 | if (fScalar != 0.0) { |
---|
125 | float fInvScalar = 1.0f / fScalar; |
---|
126 | x *= fInvScalar; |
---|
127 | y *= fInvScalar; |
---|
128 | z *= fInvScalar; |
---|
129 | } else { |
---|
130 | x = (float)G3D::inf(); |
---|
131 | y = (float)G3D::inf(); |
---|
132 | z = (float)G3D::inf(); |
---|
133 | } |
---|
134 | |
---|
135 | return *this; |
---|
136 | } |
---|
137 | |
---|
138 | //---------------------------------------------------------------------------- |
---|
139 | float Vector3::unitize (float fTolerance) { |
---|
140 | float fMagnitude = magnitude(); |
---|
141 | |
---|
142 | if (fMagnitude > fTolerance) { |
---|
143 | float fInvMagnitude = 1.0f / fMagnitude; |
---|
144 | x *= fInvMagnitude; |
---|
145 | y *= fInvMagnitude; |
---|
146 | z *= fInvMagnitude; |
---|
147 | } else { |
---|
148 | fMagnitude = 0.0f; |
---|
149 | } |
---|
150 | |
---|
151 | return fMagnitude; |
---|
152 | } |
---|
153 | |
---|
154 | //---------------------------------------------------------------------------- |
---|
155 | |
---|
156 | Vector3 Vector3::reflectAbout(const Vector3& normal) const { |
---|
157 | |
---|
158 | Vector3 out; |
---|
159 | |
---|
160 | Vector3 N = normal.direction(); |
---|
161 | |
---|
162 | // 2 * normal.dot(this) * normal - this |
---|
163 | return N * 2 * this->dot(N) - *this; |
---|
164 | } |
---|
165 | |
---|
166 | //---------------------------------------------------------------------------- |
---|
167 | #if 0 |
---|
168 | Vector3 Vector3::cosRandom(const Vector3& normal) { |
---|
169 | double e1 = G3D::random(0, 1); |
---|
170 | double e2 = G3D::random(0, 1); |
---|
171 | |
---|
172 | // Angle from normal |
---|
173 | double theta = acos(sqrt(e1)); |
---|
174 | |
---|
175 | // Angle about normal |
---|
176 | double phi = 2 * G3D_PI * e2; |
---|
177 | |
---|
178 | // Make a coordinate system |
---|
179 | Vector3 U = normal.direction(); |
---|
180 | Vector3 V = Vector3::unitX(); |
---|
181 | |
---|
182 | if (abs(U.dot(V)) > .9) { |
---|
183 | V = Vector3::unitY(); |
---|
184 | } |
---|
185 | |
---|
186 | Vector3 W = U.cross(V).direction(); |
---|
187 | V = W.cross(U); |
---|
188 | |
---|
189 | // Convert to rectangular form |
---|
190 | return cos(theta) * U + sin(theta) * (cos(phi) * V + sin(phi) * W); |
---|
191 | } |
---|
192 | //---------------------------------------------------------------------------- |
---|
193 | |
---|
194 | Vector3 Vector3::hemiRandom(const Vector3& normal) { |
---|
195 | Vector3 V = Vector3::random(); |
---|
196 | |
---|
197 | if (V.dot(normal) < 0) { |
---|
198 | return -V; |
---|
199 | } else { |
---|
200 | return V; |
---|
201 | } |
---|
202 | } |
---|
203 | #endif |
---|
204 | //---------------------------------------------------------------------------- |
---|
205 | |
---|
206 | Vector3 Vector3::reflectionDirection(const Vector3& normal) const { |
---|
207 | return -reflectAbout(normal).direction(); |
---|
208 | } |
---|
209 | |
---|
210 | //---------------------------------------------------------------------------- |
---|
211 | |
---|
212 | Vector3 Vector3::refractionDirection( |
---|
213 | const Vector3& normal, |
---|
214 | float iInside, |
---|
215 | float iOutside) const { |
---|
216 | |
---|
217 | // From pg. 24 of Henrik Wann Jensen. Realistic Image Synthesis |
---|
218 | // Using Photon Mapping. AK Peters. ISBN: 1568811470. July 2001. |
---|
219 | |
---|
220 | // Invert the directions from Wann Jensen's formulation |
---|
221 | // and normalize the vectors. |
---|
222 | const Vector3 W = -direction(); |
---|
223 | Vector3 N = normal.direction(); |
---|
224 | |
---|
225 | float h1 = iOutside; |
---|
226 | float h2 = iInside; |
---|
227 | |
---|
228 | if (normal.dot(*this) > 0.0f) { |
---|
229 | h1 = iInside; |
---|
230 | h2 = iOutside; |
---|
231 | N = -N; |
---|
232 | } |
---|
233 | |
---|
234 | const float hRatio = h1 / h2; |
---|
235 | const float WdotN = W.dot(N); |
---|
236 | |
---|
237 | float det = 1.0f - (float)square(hRatio) * (1.0f - (float)square(WdotN)); |
---|
238 | |
---|
239 | if (det < 0) { |
---|
240 | // Total internal reflection |
---|
241 | return Vector3::zero(); |
---|
242 | } else { |
---|
243 | return -hRatio * (W - WdotN * N) - N * sqrt(det); |
---|
244 | } |
---|
245 | } |
---|
246 | |
---|
247 | //---------------------------------------------------------------------------- |
---|
248 | void Vector3::orthonormalize (Vector3 akVector[3]) { |
---|
249 | // If the input vectors are v0, v1, and v2, then the Gram-Schmidt |
---|
250 | // orthonormalization produces vectors u0, u1, and u2 as follows, |
---|
251 | // |
---|
252 | // u0 = v0/|v0| |
---|
253 | // u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0| |
---|
254 | // u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1| |
---|
255 | // |
---|
256 | // where |A| indicates length of vector A and A*B indicates dot |
---|
257 | // product of vectors A and B. |
---|
258 | |
---|
259 | // compute u0 |
---|
260 | akVector[0].unitize(); |
---|
261 | |
---|
262 | // compute u1 |
---|
263 | float fDot0 = akVector[0].dot(akVector[1]); |
---|
264 | akVector[1] -= akVector[0] * fDot0; |
---|
265 | akVector[1].unitize(); |
---|
266 | |
---|
267 | // compute u2 |
---|
268 | float fDot1 = akVector[1].dot(akVector[2]); |
---|
269 | fDot0 = akVector[0].dot(akVector[2]); |
---|
270 | akVector[2] -= akVector[0] * fDot0 + akVector[1] * fDot1; |
---|
271 | akVector[2].unitize(); |
---|
272 | } |
---|
273 | |
---|
274 | //---------------------------------------------------------------------------- |
---|
275 | void Vector3::generateOrthonormalBasis (Vector3& rkU, Vector3& rkV, |
---|
276 | Vector3& rkW, bool bUnitLengthW) { |
---|
277 | if ( !bUnitLengthW ) |
---|
278 | rkW.unitize(); |
---|
279 | |
---|
280 | if ( G3D::abs(rkW.x) >= G3D::abs(rkW.y) |
---|
281 | && G3D::abs(rkW.x) >= G3D::abs(rkW.z) ) { |
---|
282 | rkU.x = -rkW.y; |
---|
283 | rkU.y = + rkW.x; |
---|
284 | rkU.z = 0.0; |
---|
285 | } else { |
---|
286 | rkU.x = 0.0; |
---|
287 | rkU.y = + rkW.z; |
---|
288 | rkU.z = -rkW.y; |
---|
289 | } |
---|
290 | |
---|
291 | rkU.unitize(); |
---|
292 | rkV = rkW.cross(rkU); |
---|
293 | } |
---|
294 | |
---|
295 | //---------------------------------------------------------------------------- |
---|
296 | |
---|
297 | std::string Vector3::toString() const { |
---|
298 | return G3D::format("(%g, %g, %g)", x, y, z); |
---|
299 | } |
---|
300 | |
---|
301 | |
---|
302 | //---------------------------------------------------------------------------- |
---|
303 | |
---|
304 | Matrix3 Vector3::cross() const { |
---|
305 | return Matrix3( 0, -z, y, |
---|
306 | z, 0, -x, |
---|
307 | -y, x, 0); |
---|
308 | } |
---|
309 | |
---|
310 | |
---|
311 | //---------------------------------------------------------------------------- |
---|
312 | // 2-char swizzles |
---|
313 | |
---|
314 | Vector2 Vector3::xx() const { return Vector2 (x, x); } |
---|
315 | Vector2 Vector3::yx() const { return Vector2 (y, x); } |
---|
316 | Vector2 Vector3::zx() const { return Vector2 (z, x); } |
---|
317 | Vector2 Vector3::xy() const { return Vector2 (x, y); } |
---|
318 | Vector2 Vector3::yy() const { return Vector2 (y, y); } |
---|
319 | Vector2 Vector3::zy() const { return Vector2 (z, y); } |
---|
320 | Vector2 Vector3::xz() const { return Vector2 (x, z); } |
---|
321 | Vector2 Vector3::yz() const { return Vector2 (y, z); } |
---|
322 | Vector2 Vector3::zz() const { return Vector2 (z, z); } |
---|
323 | |
---|
324 | // 3-char swizzles |
---|
325 | |
---|
326 | Vector3 Vector3::xxx() const { return Vector3 (x, x, x); } |
---|
327 | Vector3 Vector3::yxx() const { return Vector3 (y, x, x); } |
---|
328 | Vector3 Vector3::zxx() const { return Vector3 (z, x, x); } |
---|
329 | Vector3 Vector3::xyx() const { return Vector3 (x, y, x); } |
---|
330 | Vector3 Vector3::yyx() const { return Vector3 (y, y, x); } |
---|
331 | Vector3 Vector3::zyx() const { return Vector3 (z, y, x); } |
---|
332 | Vector3 Vector3::xzx() const { return Vector3 (x, z, x); } |
---|
333 | Vector3 Vector3::yzx() const { return Vector3 (y, z, x); } |
---|
334 | Vector3 Vector3::zzx() const { return Vector3 (z, z, x); } |
---|
335 | Vector3 Vector3::xxy() const { return Vector3 (x, x, y); } |
---|
336 | Vector3 Vector3::yxy() const { return Vector3 (y, x, y); } |
---|
337 | Vector3 Vector3::zxy() const { return Vector3 (z, x, y); } |
---|
338 | Vector3 Vector3::xyy() const { return Vector3 (x, y, y); } |
---|
339 | Vector3 Vector3::yyy() const { return Vector3 (y, y, y); } |
---|
340 | Vector3 Vector3::zyy() const { return Vector3 (z, y, y); } |
---|
341 | Vector3 Vector3::xzy() const { return Vector3 (x, z, y); } |
---|
342 | Vector3 Vector3::yzy() const { return Vector3 (y, z, y); } |
---|
343 | Vector3 Vector3::zzy() const { return Vector3 (z, z, y); } |
---|
344 | Vector3 Vector3::xxz() const { return Vector3 (x, x, z); } |
---|
345 | Vector3 Vector3::yxz() const { return Vector3 (y, x, z); } |
---|
346 | Vector3 Vector3::zxz() const { return Vector3 (z, x, z); } |
---|
347 | Vector3 Vector3::xyz() const { return Vector3 (x, y, z); } |
---|
348 | Vector3 Vector3::yyz() const { return Vector3 (y, y, z); } |
---|
349 | Vector3 Vector3::zyz() const { return Vector3 (z, y, z); } |
---|
350 | Vector3 Vector3::xzz() const { return Vector3 (x, z, z); } |
---|
351 | Vector3 Vector3::yzz() const { return Vector3 (y, z, z); } |
---|
352 | Vector3 Vector3::zzz() const { return Vector3 (z, z, z); } |
---|
353 | |
---|
354 | // 4-char swizzles |
---|
355 | |
---|
356 | Vector4 Vector3::xxxx() const { return Vector4 (x, x, x, x); } |
---|
357 | Vector4 Vector3::yxxx() const { return Vector4 (y, x, x, x); } |
---|
358 | Vector4 Vector3::zxxx() const { return Vector4 (z, x, x, x); } |
---|
359 | Vector4 Vector3::xyxx() const { return Vector4 (x, y, x, x); } |
---|
360 | Vector4 Vector3::yyxx() const { return Vector4 (y, y, x, x); } |
---|
361 | Vector4 Vector3::zyxx() const { return Vector4 (z, y, x, x); } |
---|
362 | Vector4 Vector3::xzxx() const { return Vector4 (x, z, x, x); } |
---|
363 | Vector4 Vector3::yzxx() const { return Vector4 (y, z, x, x); } |
---|
364 | Vector4 Vector3::zzxx() const { return Vector4 (z, z, x, x); } |
---|
365 | Vector4 Vector3::xxyx() const { return Vector4 (x, x, y, x); } |
---|
366 | Vector4 Vector3::yxyx() const { return Vector4 (y, x, y, x); } |
---|
367 | Vector4 Vector3::zxyx() const { return Vector4 (z, x, y, x); } |
---|
368 | Vector4 Vector3::xyyx() const { return Vector4 (x, y, y, x); } |
---|
369 | Vector4 Vector3::yyyx() const { return Vector4 (y, y, y, x); } |
---|
370 | Vector4 Vector3::zyyx() const { return Vector4 (z, y, y, x); } |
---|
371 | Vector4 Vector3::xzyx() const { return Vector4 (x, z, y, x); } |
---|
372 | Vector4 Vector3::yzyx() const { return Vector4 (y, z, y, x); } |
---|
373 | Vector4 Vector3::zzyx() const { return Vector4 (z, z, y, x); } |
---|
374 | Vector4 Vector3::xxzx() const { return Vector4 (x, x, z, x); } |
---|
375 | Vector4 Vector3::yxzx() const { return Vector4 (y, x, z, x); } |
---|
376 | Vector4 Vector3::zxzx() const { return Vector4 (z, x, z, x); } |
---|
377 | Vector4 Vector3::xyzx() const { return Vector4 (x, y, z, x); } |
---|
378 | Vector4 Vector3::yyzx() const { return Vector4 (y, y, z, x); } |
---|
379 | Vector4 Vector3::zyzx() const { return Vector4 (z, y, z, x); } |
---|
380 | Vector4 Vector3::xzzx() const { return Vector4 (x, z, z, x); } |
---|
381 | Vector4 Vector3::yzzx() const { return Vector4 (y, z, z, x); } |
---|
382 | Vector4 Vector3::zzzx() const { return Vector4 (z, z, z, x); } |
---|
383 | Vector4 Vector3::xxxy() const { return Vector4 (x, x, x, y); } |
---|
384 | Vector4 Vector3::yxxy() const { return Vector4 (y, x, x, y); } |
---|
385 | Vector4 Vector3::zxxy() const { return Vector4 (z, x, x, y); } |
---|
386 | Vector4 Vector3::xyxy() const { return Vector4 (x, y, x, y); } |
---|
387 | Vector4 Vector3::yyxy() const { return Vector4 (y, y, x, y); } |
---|
388 | Vector4 Vector3::zyxy() const { return Vector4 (z, y, x, y); } |
---|
389 | Vector4 Vector3::xzxy() const { return Vector4 (x, z, x, y); } |
---|
390 | Vector4 Vector3::yzxy() const { return Vector4 (y, z, x, y); } |
---|
391 | Vector4 Vector3::zzxy() const { return Vector4 (z, z, x, y); } |
---|
392 | Vector4 Vector3::xxyy() const { return Vector4 (x, x, y, y); } |
---|
393 | Vector4 Vector3::yxyy() const { return Vector4 (y, x, y, y); } |
---|
394 | Vector4 Vector3::zxyy() const { return Vector4 (z, x, y, y); } |
---|
395 | Vector4 Vector3::xyyy() const { return Vector4 (x, y, y, y); } |
---|
396 | Vector4 Vector3::yyyy() const { return Vector4 (y, y, y, y); } |
---|
397 | Vector4 Vector3::zyyy() const { return Vector4 (z, y, y, y); } |
---|
398 | Vector4 Vector3::xzyy() const { return Vector4 (x, z, y, y); } |
---|
399 | Vector4 Vector3::yzyy() const { return Vector4 (y, z, y, y); } |
---|
400 | Vector4 Vector3::zzyy() const { return Vector4 (z, z, y, y); } |
---|
401 | Vector4 Vector3::xxzy() const { return Vector4 (x, x, z, y); } |
---|
402 | Vector4 Vector3::yxzy() const { return Vector4 (y, x, z, y); } |
---|
403 | Vector4 Vector3::zxzy() const { return Vector4 (z, x, z, y); } |
---|
404 | Vector4 Vector3::xyzy() const { return Vector4 (x, y, z, y); } |
---|
405 | Vector4 Vector3::yyzy() const { return Vector4 (y, y, z, y); } |
---|
406 | Vector4 Vector3::zyzy() const { return Vector4 (z, y, z, y); } |
---|
407 | Vector4 Vector3::xzzy() const { return Vector4 (x, z, z, y); } |
---|
408 | Vector4 Vector3::yzzy() const { return Vector4 (y, z, z, y); } |
---|
409 | Vector4 Vector3::zzzy() const { return Vector4 (z, z, z, y); } |
---|
410 | Vector4 Vector3::xxxz() const { return Vector4 (x, x, x, z); } |
---|
411 | Vector4 Vector3::yxxz() const { return Vector4 (y, x, x, z); } |
---|
412 | Vector4 Vector3::zxxz() const { return Vector4 (z, x, x, z); } |
---|
413 | Vector4 Vector3::xyxz() const { return Vector4 (x, y, x, z); } |
---|
414 | Vector4 Vector3::yyxz() const { return Vector4 (y, y, x, z); } |
---|
415 | Vector4 Vector3::zyxz() const { return Vector4 (z, y, x, z); } |
---|
416 | Vector4 Vector3::xzxz() const { return Vector4 (x, z, x, z); } |
---|
417 | Vector4 Vector3::yzxz() const { return Vector4 (y, z, x, z); } |
---|
418 | Vector4 Vector3::zzxz() const { return Vector4 (z, z, x, z); } |
---|
419 | Vector4 Vector3::xxyz() const { return Vector4 (x, x, y, z); } |
---|
420 | Vector4 Vector3::yxyz() const { return Vector4 (y, x, y, z); } |
---|
421 | Vector4 Vector3::zxyz() const { return Vector4 (z, x, y, z); } |
---|
422 | Vector4 Vector3::xyyz() const { return Vector4 (x, y, y, z); } |
---|
423 | Vector4 Vector3::yyyz() const { return Vector4 (y, y, y, z); } |
---|
424 | Vector4 Vector3::zyyz() const { return Vector4 (z, y, y, z); } |
---|
425 | Vector4 Vector3::xzyz() const { return Vector4 (x, z, y, z); } |
---|
426 | Vector4 Vector3::yzyz() const { return Vector4 (y, z, y, z); } |
---|
427 | Vector4 Vector3::zzyz() const { return Vector4 (z, z, y, z); } |
---|
428 | Vector4 Vector3::xxzz() const { return Vector4 (x, x, z, z); } |
---|
429 | Vector4 Vector3::yxzz() const { return Vector4 (y, x, z, z); } |
---|
430 | Vector4 Vector3::zxzz() const { return Vector4 (z, x, z, z); } |
---|
431 | Vector4 Vector3::xyzz() const { return Vector4 (x, y, z, z); } |
---|
432 | Vector4 Vector3::yyzz() const { return Vector4 (y, y, z, z); } |
---|
433 | Vector4 Vector3::zyzz() const { return Vector4 (z, y, z, z); } |
---|
434 | Vector4 Vector3::xzzz() const { return Vector4 (x, z, z, z); } |
---|
435 | Vector4 Vector3::yzzz() const { return Vector4 (y, z, z, z); } |
---|
436 | Vector4 Vector3::zzzz() const { return Vector4 (z, z, z, z); } |
---|
437 | |
---|
438 | |
---|
439 | |
---|
440 | |
---|
441 | |
---|
442 | |
---|
443 | } // namespace |
---|