1 | /* |
---|
2 | * Copyright (C) 2005-2008 MaNGOS <http://www.mangosproject.org/> |
---|
3 | * |
---|
4 | * Copyright (C) 2008 Trinity <http://www.trinitycore.org/> |
---|
5 | * |
---|
6 | * This program is free software; you can redistribute it and/or modify |
---|
7 | * it under the terms of the GNU General Public License as published by |
---|
8 | * the Free Software Foundation; either version 2 of the License, or |
---|
9 | * (at your option) any later version. |
---|
10 | * |
---|
11 | * This program is distributed in the hope that it will be useful, |
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
14 | * GNU General Public License for more details. |
---|
15 | * |
---|
16 | * You should have received a copy of the GNU General Public License |
---|
17 | * along with this program; if not, write to the Free Software |
---|
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
19 | */ |
---|
20 | |
---|
21 | #ifndef _TREENODE_H |
---|
22 | #define _TREENODE_H |
---|
23 | |
---|
24 | #include "ShortVector.h" |
---|
25 | #include "ShortBox.h" |
---|
26 | #include "NodeValueAccess.h" |
---|
27 | #include "VMapTools.h" |
---|
28 | |
---|
29 | #include <G3D/Vector3.h> |
---|
30 | #include <G3D/AABox.h> |
---|
31 | |
---|
32 | namespace VMAP |
---|
33 | { |
---|
34 | /** |
---|
35 | This Class is mainly taken from G3D/AABSPTree.h and modified to match our data structure. |
---|
36 | It is the node within our static BSP-Trees. |
---|
37 | It does not use pointers but indexes to access the values and other nodes. |
---|
38 | */ |
---|
39 | |
---|
40 | //===================================================== |
---|
41 | |
---|
42 | class TreeNode |
---|
43 | { |
---|
44 | private: |
---|
45 | /** Location along the specified axis */ |
---|
46 | float iSplitLocation; |
---|
47 | // Offest or the clients |
---|
48 | int iChilds[2]; |
---|
49 | //Position within the TriangleBox array |
---|
50 | unsigned int iStartPosition; |
---|
51 | G3D::Vector3::Axis iSplitAxis; |
---|
52 | G3D::AABox iBounds; |
---|
53 | unsigned short iNumberOfValues; |
---|
54 | public: |
---|
55 | TreeNode() {} |
---|
56 | TreeNode(unsigned short pNValues, unsigned int pStartPosition) |
---|
57 | { |
---|
58 | iChilds[0] = -1; |
---|
59 | iChilds[1] = -1; |
---|
60 | iStartPosition = pStartPosition; |
---|
61 | iNumberOfValues = pNValues; |
---|
62 | } |
---|
63 | |
---|
64 | bool hasChilds() const { return(iChilds[0] >= 0 || iChilds[1] >= 0); } |
---|
65 | |
---|
66 | TreeNode const* getChild(TreeNode const* pValueArray, int pNo) const; |
---|
67 | // pChildNo = 0 or 1 |
---|
68 | inline void setChildPos(int pChildNo, int pChildPosInTreeNodeArray) { iChilds[pChildNo] = pChildPosInTreeNodeArray; } |
---|
69 | |
---|
70 | inline G3D::Vector3::Axis getSplitAxis() const { return(iSplitAxis); } |
---|
71 | |
---|
72 | inline void setSplitAxis(G3D::Vector3::Axis a) { iSplitAxis = a; } |
---|
73 | inline void setSplitLocation(float l) { iSplitLocation = l; } |
---|
74 | |
---|
75 | inline void setBounds(const G3D::AABox& pBox) { iBounds = pBox; } |
---|
76 | |
---|
77 | inline void setBounds(const G3D::Vector3& lo, const G3D::Vector3& hi) { iBounds.set(lo,hi); } |
---|
78 | |
---|
79 | inline void getBounds(G3D::AABox& pBox) const { pBox.set(iBounds.low(),iBounds.high()); } |
---|
80 | |
---|
81 | inline float getSplitLocation() const { return(iSplitLocation); } |
---|
82 | |
---|
83 | inline unsigned short getNValues() const { return (iNumberOfValues); } |
---|
84 | |
---|
85 | inline unsigned int getStartPosition() const { return(iStartPosition); } |
---|
86 | |
---|
87 | inline bool operator==(const TreeNode& n) const |
---|
88 | { |
---|
89 | return ((iSplitLocation == n.iSplitLocation) && |
---|
90 | (iChilds[0] == n.iChilds[0]) && (iChilds[1] == n.iChilds[1]) && |
---|
91 | (iStartPosition == n.iStartPosition) && |
---|
92 | (iSplitAxis == n.iSplitAxis) && |
---|
93 | (iBounds == n.iBounds) && |
---|
94 | (iNumberOfValues == n.iNumberOfValues)); |
---|
95 | } |
---|
96 | |
---|
97 | inline bool operator!=(const TreeNode& n) const |
---|
98 | { |
---|
99 | return !((iSplitLocation == n.iSplitLocation) && |
---|
100 | (iChilds[0] == n.iChilds[0]) && (iChilds[1] == n.iChilds[1]) && |
---|
101 | (iStartPosition == n.iStartPosition) && |
---|
102 | (iSplitAxis == n.iSplitAxis) && |
---|
103 | (iBounds == n.iBounds) && |
---|
104 | (iNumberOfValues == n.iNumberOfValues)); |
---|
105 | } |
---|
106 | |
---|
107 | /** Returns true if the ray intersects this node */ |
---|
108 | bool intersects(const G3D::Ray& ray, float distance) const { |
---|
109 | // See if the ray will ever hit this node or its children |
---|
110 | G3D::Vector3 location; |
---|
111 | bool alreadyInsideBounds = false; |
---|
112 | bool rayWillHitBounds = |
---|
113 | MyCollisionDetection::collisionLocationForMovingPointFixedAABox( |
---|
114 | ray.origin, ray.direction, iBounds, location, alreadyInsideBounds); |
---|
115 | |
---|
116 | bool canHitThisNode = (alreadyInsideBounds || |
---|
117 | (rayWillHitBounds && ((location - ray.origin).squaredLength() < (distance*distance)))); |
---|
118 | |
---|
119 | return canHitThisNode; |
---|
120 | } |
---|
121 | |
---|
122 | template<typename RayCallback, typename TNode, typename TValue> |
---|
123 | void intersectRay( |
---|
124 | const G3D::Ray& ray, |
---|
125 | RayCallback& intersectCallback, |
---|
126 | float& distance, |
---|
127 | const NodeValueAccess<TNode, TValue>& pNodeValueAccess, |
---|
128 | bool pStopAtFirstHit, |
---|
129 | bool intersectCallbackIsFast) const { |
---|
130 | float enterDistance = distance; |
---|
131 | if (! intersects(ray, distance)) { |
---|
132 | // The ray doesn't hit this node, so it can't hit the children of the node. |
---|
133 | return; |
---|
134 | } |
---|
135 | |
---|
136 | // Test for intersection against every object at this node. |
---|
137 | for (unsigned int v = iStartPosition; v < (iNumberOfValues+iStartPosition); ++v) { |
---|
138 | const TValue& nodeValue = pNodeValueAccess.getValue(v); |
---|
139 | bool canHitThisObject = true; |
---|
140 | if (! intersectCallbackIsFast) { |
---|
141 | // See if |
---|
142 | G3D::Vector3 location; |
---|
143 | const G3D::AABox& bounds = nodeValue.getAABoxBounds(); |
---|
144 | bool alreadyInsideBounds = false; |
---|
145 | bool rayWillHitBounds = |
---|
146 | MyCollisionDetection::collisionLocationForMovingPointFixedAABox( |
---|
147 | ray.origin, ray.direction, bounds, location, alreadyInsideBounds); |
---|
148 | |
---|
149 | canHitThisObject = (alreadyInsideBounds || |
---|
150 | (rayWillHitBounds && ((location - ray.origin).squaredLength() < (distance*distance)))); |
---|
151 | } |
---|
152 | |
---|
153 | if (canHitThisObject) { |
---|
154 | // It is possible that this ray hits this object. Look for the intersection using the |
---|
155 | // callback. |
---|
156 | intersectCallback(ray, &nodeValue, pStopAtFirstHit, distance); |
---|
157 | } |
---|
158 | if(pStopAtFirstHit && distance < enterDistance) |
---|
159 | return; |
---|
160 | } |
---|
161 | |
---|
162 | // There are three cases to consider next: |
---|
163 | // |
---|
164 | // 1. the ray can start on one side of the splitting plane and never enter the other, |
---|
165 | // 2. the ray can start on one side and enter the other, and |
---|
166 | // 3. the ray can travel exactly down the splitting plane |
---|
167 | |
---|
168 | enum {NONE = -1}; |
---|
169 | int firstChild = NONE; |
---|
170 | int secondChild = NONE; |
---|
171 | |
---|
172 | if (ray.origin[iSplitAxis] < iSplitLocation) { |
---|
173 | |
---|
174 | // The ray starts on the small side |
---|
175 | firstChild = 0; |
---|
176 | |
---|
177 | if (ray.direction[iSplitAxis] > 0) { |
---|
178 | // The ray will eventually reach the other side |
---|
179 | secondChild = 1; |
---|
180 | } |
---|
181 | |
---|
182 | } else if (ray.origin[iSplitAxis] > iSplitLocation) { |
---|
183 | |
---|
184 | // The ray starts on the large side |
---|
185 | firstChild = 1; |
---|
186 | |
---|
187 | if (ray.direction[iSplitAxis] < 0) { |
---|
188 | secondChild = 0; |
---|
189 | } |
---|
190 | } else { |
---|
191 | // The ray starts on the splitting plane |
---|
192 | if (ray.direction[iSplitAxis] < 0) { |
---|
193 | // ...and goes to the small side |
---|
194 | firstChild = 0; |
---|
195 | } else if (ray.direction[iSplitAxis] > 0) { |
---|
196 | // ...and goes to the large side |
---|
197 | firstChild = 1; |
---|
198 | } |
---|
199 | } |
---|
200 | |
---|
201 | // Test on the side closer to the ray origin. |
---|
202 | if ((firstChild != NONE) && iChilds[firstChild]>0) { |
---|
203 | getChild(pNodeValueAccess.getNodePtr() , firstChild)->intersectRay(ray, intersectCallback, distance, pNodeValueAccess, pStopAtFirstHit,intersectCallbackIsFast); |
---|
204 | if(pStopAtFirstHit && distance < enterDistance) |
---|
205 | return; |
---|
206 | } |
---|
207 | if (ray.direction[iSplitAxis] != 0) { |
---|
208 | // See if there was an intersection before hitting the splitting plane. |
---|
209 | // If so, there is no need to look on the far side and recursion terminates. |
---|
210 | float distanceToSplittingPlane = (iSplitLocation - ray.origin[iSplitAxis]) / ray.direction[iSplitAxis]; |
---|
211 | if (distanceToSplittingPlane > distance) { |
---|
212 | // We aren't going to hit anything else before hitting the splitting plane, |
---|
213 | // so don't bother looking on the far side of the splitting plane at the other |
---|
214 | // child. |
---|
215 | return; |
---|
216 | } |
---|
217 | } |
---|
218 | // Test on the side farther from the ray origin. |
---|
219 | if ((secondChild != NONE) && iChilds[secondChild]>0) { |
---|
220 | getChild(pNodeValueAccess.getNodePtr() , secondChild)->intersectRay(ray, intersectCallback, distance, pNodeValueAccess, pStopAtFirstHit,intersectCallbackIsFast); |
---|
221 | } |
---|
222 | } |
---|
223 | }; |
---|
224 | } |
---|
225 | #endif |
---|